\(\hat{C}\) =\(90^{o}\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: BM=BC nên ΔBMC cân tại B

=>\(\widehat{BCM}=\widehat{BMC}\)

mà \(\widehat{BCM}+\widehat{ACM}=\widehat{ACB}=90^0\)

và \(\widehat{BMC}+\widehat{HCM}=90^0\)(ΔHCM vuông tại H)

nên \(\widehat{ACM}=\widehat{HCM}\)

Xét ΔCHM và ΔCNM có

CH=CN

\(\widehat{HCM}=\widehat{NCM}\)

CM chung

Do đó: ΔCHM=ΔCNM

=>\(\widehat{CHM}=\widehat{CNM}\)

=>\(\widehat{CNM}=90^0\)

=>MN\(\perp\)AC tại N

b: ΔCBA vuông tại C

=>\(CA^2+CB^2=AB^2\)

ΔCBA có CH là đường cao

nên \(S_{CBA}=\dfrac{1}{2}\cdot CH\cdot AB=\dfrac{1}{2}\cdot CA\cdot CB\)

=>\(CH\cdot AB=CA\cdot CB\)

\(\left(CH+AB\right)^2-\left(CA+CB\right)^2\)

\(=CH^2+AB^2+2\cdot CH\cdot AB-CA^2-CB^2-2\cdot CA\cdot CB\)

\(=CH^2+\left(AB^2-AB^2\right)+\left(2\cdot CH\cdot AB-2\cdot CH\cdot AB\right)=CH^2>0\)

=>\(\left(CH+AB\right)^2>\left(CA+CB\right)^2\)

=>CH+AB>CA+CB

=>CA+CB<CH+AB

5 tháng 2

thế 15678 x 4568999 bằng bao nhiêu ?

5 tháng 8 2019

Bạn tham khảo câu a ở link này:

Câu hỏi của Nguyễn Tiến Vững - Toán lớp 7 - Học toán với OnlineMath

29 tháng 12 2018

Tự vẽ hình và ghi GT, KL

CM :

a) Xét \(\Delta ABM\)và \(\Delta CNM\)

Có AM = CM (gt)

    \(\widehat{AMC}=\widehat{CMN}\)(đối đỉnh )

    MB = NM (gt)

=> \(\Delta ABM=\Delta CNM\)(c.g.c)

=> góc NCM = góc MAB ( hai cạnh tương ứng )

Mà góc MAB = 900 (gt) => góc NCM = 900

=> CN \(\perp\)AC

và CN = AB (hai cạnh tương ứng)

b) Xét tam giác AMN và tam giác CMB

có MN = MB (gt)

  góc NMA = góc CMB (đối đỉnh)

  CM = AM (gt)

=> tam giác AMN = tam giác CMB (c.g.c)

=> AN = BC ( hai cạnh tương ứng)

=> góc NAM = góc BCM ( hai góc tương ứng)

Mà góc NAM và góc BCM ở vị trí so le trong

=> AN // BC

30 tháng 12 2018

CM :

a) Xét ΔABMvà ΔCNM

Có AM = CM (gt)

    ^AMC=^CMN(đối đỉnh )

    MB = NM (gt)

=> ΔABM=ΔCNM(c.g.c)

=> góc NCM = góc MAB ( hai cạnh tương ứng )

Mà góc MAB = 900 (gt) => góc NCM = 900

=> CN AC

và CN = AB (hai cạnh tương ứng)

b) Xét tam giác AMN và tam giác CMB

có MN = MB (gt)

  góc NMA = góc CMB (đối đỉnh)

  CM = AM (gt)

=> tam giác AMN = tam giác CMB (c.g.c)

=> AN = BC ( hai cạnh tương ứng)

=> góc NAM = góc BCM ( hai góc tương ứng)

Mà góc NAM và góc BCM ở vị trí so le trong

=> AN // BC

3 tháng 12 2018

A C B E D Xét tam giác vuông ABC và tam giác vuông ADE có :

AB=AD

AC=AE

=> tam giác ABC= tam giác ADE ( 2 cạnh góc vuông ) 

28 tháng 2 2019

Câu hỏi của Bỉ Ngạn Hoa - Toán lớp 7 - Học toán với OnlineMath

Em tham khảo !

21 tháng 8 2018

a)    \(\Delta\)ABM và \(\Delta\)NCM, có:

              AM=MC ( vì M là trung điểm )

              \(\widehat{AMB}\)=\(\widehat{CMN}\)( hai góc đối đỉnh )

              BM=MN ( vì M là trung điểm )

\(\Rightarrow\)\(\Delta\)AMB =\(\Delta\)NCM ( c.g.c )

\(\Rightarrow\)\(\widehat{BAM}\)=\(\widehat{NCM}\)= 900 ( hai góc tương ứng ) \(\Rightarrow\)CN\(\perp\)AC

\(\Rightarrow\)CN=AB ( hai cạnh tương ứng )

I ) Cho tam giác ABC vuông tại A có AB=3cm; AC=4cma) Tính độ dài BCb) Kẻ Bm là tia p.g của \(\widehat{ABC}\left(M\in AC\right),MH⊥BC\left(H\in BC\right)\)Chứng minh \(\Delta BMA=\Delta BMH\)c) Chứng minh AM<MCd) Trên tia đối của tia AB lấy N sao cho AN=CH. Chứng minh 3 điểm N,M,H thẳng hàngII ) Cho tam giác ABC có AB=3cm; AC=4cm: BC=5cm. Kẻ đường cao AH \(\left(H\in BC\right)\)1) Chứng tỏ tam giác ABC là tam giác vuông2) Trên cạnh BC...
Đọc tiếp

I ) Cho tam giác ABC vuông tại A có AB=3cm; AC=4cm

a) Tính độ dài BC

b) Kẻ Bm là tia p.g của \(\widehat{ABC}\left(M\in AC\right),MH⊥BC\left(H\in BC\right)\)Chứng minh \(\Delta BMA=\Delta BMH\)

c) Chứng minh AM<MC

d) Trên tia đối của tia AB lấy N sao cho AN=CH. Chứng minh 3 điểm N,M,H thẳng hàng

II ) Cho tam giác ABC có AB=3cm; AC=4cm: BC=5cm. Kẻ đường cao AH \(\left(H\in BC\right)\)

1) Chứng tỏ tam giác ABC là tam giác vuông

2) Trên cạnh BC lấy D sao cho BD=BA, trên cạnh AC lấy E sao AE=AH. Gọi F là giao điểm của DE và AH, Chứng minh

a) \(DE⊥AC\)

b) \(\Delta ACF\)cân

c) \(BC+AH>AC+AB\)

III ) Cho tam giác ABC vuôg tại B có \(\widehat{BAC=60^o}\).Vẽ tia p.g AD của \(\widehat{BAC}\left(D\in BC\right)\)từ D vẽ \(DE⊥AC\left(E\in AC\right)\). Chứng minh rằng

a) \(AB=AE\)

b) \(AD⊥BE\)

c) \(DC>AB\)

                                    GIÚP MÌNK NHA!!!!!!!!!

 

0