Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm ba phân số khác nhau biết phân số thứ nhất và phân số thứ hai là 7/8,tổng của phân số thứ hai và phân số thứ ba là 8/7,tổng của phân số thứ nhất và phân số thứ ba là 8/9
B A D C O M E
a)+)tứ giác ABCD có 2 đường chéo bằng nhau AC=BD , vuông góc với nhau và cắt nhau tại trung điểm mỗi đường
=> Tứ giác ABCD là hình vuông
+) Tam giác AOB vuông tại O, có OA=OB=R, theo Pytago thuận:
=> \(AB^2=OA^2+OB^2=2R^2\)
Khi đó diện tích tứ giác ABCD:
\(S=AB^2=2R^2\)
b) +) góc AEC=90' ( góc nội tiếp chắn nửa đường tròn)
Ta có: góc MOC + góc MEC =180=> OMEC nội tiếp đường tròn đường kính MC
Theo Pytago thuận ta có:
\(MC^2=OM^2+OC^2=\frac{R^2}{4}+R^2=\frac{5R^2}{4}\Rightarrow MC=\frac{R\sqrt{5}}{2}\)
\(\Rightarrow S=\frac{MC^2}{4}.\pi=\frac{5R^2}{16}.\pi\)
c) MA=MC (M thuộc trung trực AC)=> tam giác MAC cân tại M=> MCA=MAC
Tương tự, ta có OAE=OEA
=> OEA=MCA
=> \(\Delta OAE~\Delta MAC\left(g.g\right)\)
\(\Rightarrow\frac{OA}{MA}=\frac{AE}{AC}\Leftrightarrow MA.AE=OA.AC=2R^2\)
Chọn đáp án C.
Gọi O là tâm của hình vuông ABCD
Khi đó, bán kính đường tròn ngoại tiếp hình vuông ABCD là R = OA
Áp dụng đinh lí Pytago vào tam giác vuông ABC ta có:
Tứ giác ABCD là hình thoi nên ˆA=ˆC.A^=C^. Tứ giác ABCD nội tiếp đường tròn (O; R) nên ˆA+ˆC=180°.A^+C^=180°. Suy ra ˆA=ˆC=180°2=90°.A^=C^=180°2=90°. Hình thoi ABCD có ˆA=ˆC=90°A^=C^=90° nên là hình vuông. Khi đó, hình vuông ABCD nội tiếp trong đường tròn có bán kính là R=AB√22=a√2⋅√22=a