Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sắp xếp A(x)=\(2x^5+x^3+x^2-7x-9\)
B(x)=\(x^4+4x^3+4x^2+5x+11\)
b,M(x)= \(2x^5+x^4+5x^3+5x^2-2x+2\)
N(x)=\(2x^5-x^4-3x^3-3x^2-12x-20\)
c, Thay x=2 vào N(x) ta được
N(2)=0 Vậy 2 là nghiệm của đt N(x)
Thay x=2 vào M(x) ta được
M(2)=.... \(\ne\)0(tự tính nha)
Vậy.............
\(M\left(x\right)=P\left(x\right)+Q\left(x\right)=2,5x^6-4+2,5x^5-6x^3+2x^2\)-5x+\(3x-2,5x^6-x^2+5-2,5x^5+6x^3\)
=\(\left(2,5x^6-2,5x^6\right)\)+\(\left(2,5x^5-2,5x^5\right)\)\(\left(-6x^3+6x^3\right)\)+\(\left(2x^2-x^2\right)\)+\(\left(-5x+3x\right)\)+(-4+5)
= \(x^2-2x+1\)
a) Đặt A(x) = 0
Ta có:
3(x + 2) - 2x(x + 2) = 0
=> (x + 2)(3 - 2x) = 0
\(\Rightarrow\left[{}\begin{matrix}x+2=0\\3-2x=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-2\\2x=3\Rightarrow x=\dfrac{3}{2}\end{matrix}\right.\)
Vậy nghiệm của đa thức A(x) là x = -2 hoặc \(x=\dfrac{3}{2}\)
b) Đặt B(x) = 0
Ta có:
2x + 8 - 23 = 0
=> 2x + 8 = 23
=> 2x = 15
\(\Rightarrow x=\dfrac{15}{2}\)
Vậy nghiệm của đa thức B(x) là \(x=\dfrac{15}{2}\)
c) Đặt C(x) = 0
Ta có:
-x5 + 5 = 0
=> -x5 = -5
=> x5 = 5
\(\Rightarrow x=\sqrt[5]{5}\)
Vậy nghiệm của đa thức C(x) là \(x=\sqrt[5]{5}\)
d) Đặt D(x) = 0
Ta có:
2x3 - 18x = 0
=> x(2x2 - 18) = 0
\(\Rightarrow\left[{}\begin{matrix}x=0\\2x^2-18=0\Rightarrow2x^2=18\Rightarrow x^2=9\Rightarrow x=\pm3\end{matrix}\right.\)
Vậy nghiệm của đa thức D(x) là x = 0 hoặc \(x=\pm3\)
e) Đặt E(x) = 0
Ta có:
\(-\dfrac{2}{3}x+\dfrac{5}{9}=0\)
\(\Rightarrow-\dfrac{2}{3}x=-\dfrac{5}{9}\)
\(\Rightarrow x=\dfrac{5}{6}\)
Vậy nghiệm của đa thức E(x) là \(x=\dfrac{5}{6}\)
g) Đặt G(x) = 0
Ta có:
\(\dfrac{4}{25}-x^2=0\)
\(\Rightarrow x^2=\dfrac{4}{25}\)
\(\Rightarrow x=\pm\left(\dfrac{2}{5}\right)\)
Vậy nghiệm của đa thức G(x) là \(x=\pm\left(\dfrac{2}{5}\right)\)
h) Đặt H(x) = 0
Ta có:
x2 - 2x + 1 = 0
=> x2 - 2x = -1
=> x(x - 2) = -1
=> Ta có trường hợp:
+/ x = -1
Và x - 2 = 1 => x = 3
Mà \(-1\ne3\) => Không tồn tại trường hợp x = -1 và x - 2 = 1
+/ x = 1
Và x - 2 = -1 => x = 1
Vậy nghiệm của đa thức H(x) là x = 1
k) Đặt K(x) = 0
Ta có:
5x . (-2x2) . 4x . (-6x) = 0
=> 240x5 = 0
=> x5 = 0
=> x = 0
Vậy nghiệm của đa thức K(x) là x = 0
a) \(\frac{2x-1}{2}=\frac{x+5}{4}\Leftrightarrow4\left(2x-1\right)=2\left(x+5\right)\)
\(\Leftrightarrow8x-4=2x+10\)
\(\Leftrightarrow6x=14\)
\(\Leftrightarrow x=\frac{7}{3}\)
b) \(6x+3\left(x-\frac{1}{2}\right)=5-\frac{1}{2}x\)
\(\Rightarrow6x+3x-\frac{3}{2}=5-\frac{1}{2}x\)
\(\Rightarrow6x+3x+\frac{1}{2}x=5+\frac{3}{2}\)
\(\Leftrightarrow9,5x=6,5\)
\(\Leftrightarrow x=\frac{13}{19}\)
c) \(3\left(x-2\right)=\frac{1}{2}\left(4-2x\right)\)
\(\Rightarrow3x-6=2-x\)
\(\Rightarrow4x=8\Rightarrow x=2\)
1.b) \(\left(\left|x\right|-3\right)\left(x^2+4\right)< 0\)
\(\Rightarrow\hept{\begin{cases}\left|x\right|-3\\x^2+4\end{cases}}\) trái dấu
\(TH1:\hept{\begin{cases}\left|x\right|-3< 0\\x^2+4>0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left|x\right|< 3\\x^2>-4\end{cases}}\Leftrightarrow x\in\left\{0;\pm1;\pm2\right\}\)
\(TH1:\hept{\begin{cases}\left|x\right|-3>0\\x^2+4< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left|x\right|>3\\x^2< -4\end{cases}}\Leftrightarrow x\in\left\{\varnothing\right\}\)
Vậy \(x\in\left\{0;\pm1;\pm2\right\}\)
Mk nhầm nha câu đầu chỉ có 1 cái x-1 + x -2 thôi ko có cái đằng sau nhé ! giá trị tuyệt đối thì vẫn giữ nguyên !
\(a)\) \(A\left(x\right)+B\left(x\right)=\) \(-2x^3-2x^2+6x-x+5+\left(x^3-2x+1\right)\)
\(=-2x^3-2x^2+5x+5+x^3-2x+1\)
\(=-x^3-2x^2+3x+6\)
\(b)\) \(A\left(x\right)-B\left(x\right)=\) \(-2x^3-2x^2+6x-x+5-\left(x^3-2x+1\right)\)
\(=-2x^3-2x^2+5x+5-x^3+2x-1\)
\(=-3x^3-2x^2+7x+4\)