K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Sửa đề: ADHE

Xét tứ giác ADHE có \(\widehat{ADH}+\widehat{AEH}=90^0+90^0=180^0\)

nên ADHE là tứ giác nội tiếp

Xét tứ giác BCDE có \(\widehat{BEC}=\widehat{BDC}=90^0\)

nên BCDE là tứ giác nội tiếp

b: Xét ΔADB vuông tại D và ΔAEC vuông tại E có

\(\widehat{DAB}\) chung

Do đó: ΔADB~ΔAEC

=>\(\dfrac{AD}{AE}=\dfrac{AB}{AC}\)

=>\(AD\cdot AC=AE\cdot AB\)

c: Gọi Ax là tiếp tuyến tại A của (O)

=>OA\(\perp\)Ax tại A

Xét (O) có

\(\widehat{xAC}\) là góc tạo bởi tiếp tuyến Ax và dây cung AC

\(\widehat{ABC}\) là góc nội tiếp chắn cung AC

Do đó: \(\widehat{xAC}=\widehat{ABC}\)

mà \(\widehat{ABC}=\widehat{ADE}\left(=180^0-\widehat{EDC}\right)\)

nên \(\widehat{xAC}=\widehat{ADE}\)

mà hai góc này là hai góc ở vị trí so le trong

nên DE//Ax

=>DE\(\perp\)OA

8 tháng 1

a, Để chứng minh rằng tứ giác ADHC và BCDE nội tiếp, ta sử dụng Định lý Công với các góc nội tiếp: - Góc DCH = 90° do AD là đường cao của tam giác ABC. - Góc EBD = 90° do CE là đường cao của tam giác ABC. Từ đó suy ra tứ giác ADHC và BCDE nội tiếp. b, Ta có: Góc CAD = Góc CBE (cùng nằm trên cùng một dây CE của đường tròn (O)) Góc ACD = Góc ECB (tương tự) => Tam giác CAD ~ tam giác BCE (theo NNLT) Suy ra: AE/AB = AD/AC (do tỉ số đồng dạng trong hai tam giác tương đương). c, Để chứng minh OA vuông DE, ta chứng minh OA vuông trực tiếp DE bằng cách chứng minh OA vuông OD và OA vuông OE. Nhưng vì O nằm trên đường tròn nên OD và OE là bán kính của đường tròn, suy ra OA vuông OD và OA vuông OE. Vậy ta kết luận được rằng OA vuông trực tiếp DE.

b) Xét tứ giác BEDC có 

\(\widehat{BDC}=\widehat{BEC}\left(=90^0\right)\)

nên BEDC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

17 tháng 4 2020

a) Xét (O) có :

AB là tiếp tuyến tại B

AC là tiếp tuyến tại C 

AB cắt AC tại A

\(\Rightarrow\widehat{ABO}=\widehat{ACO}=90^o\)và OA là p/g \(\widehat{BOC}\)

Xét tg ABOC có \(\widehat{ABO}+\widehat{ACO}=180^o\)Mà 2 góc này đối nhau

\(\Rightarrow\)ABOC là tg nt

b) Xét (O) có 

\(\widehat{ABE}\)là góc tạo bởi tiếp tuyến AB và dây BE

\(\widehat{BDE}\)là góc nt chắn cung BE

\(\Rightarrow\widehat{ABE}=\widehat{BDE}=\frac{1}{2}sđ\widebat{BE}\)

Xét \(\Delta ABEvà\Delta ADB:\)

\(\widehat{BAD}\)chung

\(\widehat{ABE}=\widehat{BDE}\)

\(\Rightarrow\Delta ABE\infty\Delta ADB\left(gg\right)\)

\(\Rightarrow\frac{AB}{AD}=\frac{AE}{AB}\Rightarrow AB^2=AD.AE\)

c) Vì OA là p/g \(\widehat{BOC}\Rightarrow\widehat{BOA}=\widehat{COA}=\frac{\widehat{BOC}}{2}\)

Do ABOC là tg nt\(\Rightarrow\widehat{BOA}=\widehat{BCA}\)(cùng chắn cung AB)

Suy ra \(\widehat{AOC}=\widehat{ACB}\)

13 tháng 6 2016
 
Ta có hình vẽ như sau:

Xét tứ giác CEHD ta có:

Góc CEH = 900 (Vì BE là đường cao)

Góc CDH = 900 (Vì AD là đường cao)

=> góc CEH + góc CDH = 1800

Mà góc CEH và góc CDH là hai góc đối của tứ giác CEHD. Do đó CEHD là tứ giác nội tiếp.

10 tháng 4 2020

có câu d không bạn

10 tháng 4 2020

Mk đang nghĩ

25 tháng 4 2017

Giải bài 15 trang 135 SGK Toán 9 Tập 2 | Giải toán lớp 9Giải bài 15 trang 135 SGK Toán 9 Tập 2 | Giải toán lớp 9Giải bài 15 trang 135 SGK Toán 9 Tập 2 | Giải toán lớp 9

30 tháng 12 2017

Giải bài 15 trang 135 SGK Toán 9 Tập 2 | Giải toán lớp 9

6 tháng 5 2020

Câu hỏi là gì bạn?