K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét (O) có

ΔAHB nội tiếp

AB là đường kính

Do đó: ΔAHB vuông tại H

b: ΔAHB vuông tại H

=>AH\(\perp\)BC tại H

=>ΔAHC vuông tại H

ΔHAC vuông tại H

mà HK là đường trung tuyến

nên KA=KH

Xét ΔKAO và ΔKHO có

KA=KH

AO=HO

KO chung

Do đó: ΔKAO=ΔKHO

=>\(\widehat{KAO}=\widehat{KHO}\)

=>\(\widehat{KHO}=90^0\)

=>KH là tiếp tuyến của (O)

c: Xét tứ giác KAOH có \(\widehat{KAO}+\widehat{KHO}=90^0+90^0=180^0\)

nên KAOH là tứ giác nội tiếp

=>K,A,O,H cùng thuộc một đường tròn

8 tháng 1

a/

Xét (O) có

\(\hat{AHB}=90^{o}\) (Góc nt chắn nửa đường tròn)

=> △AHB vuông

b/

\(OA=OH=R\rArr\Delta OAH\) cân tại H

\(\rArr\hat{OAH}=\hat{OHA}\)

Xét tg vuông AHC có

\(AK=CK\rArr KH=AK=CK=\frac{AC}{2}\) (trong tg vuông trung tuyến thuộc cạnh huyền bằng nửa cạnh huyền)

\(\rArr\Delta KHA\) cân tại K

\(\rArr\hat{KAH}=\hat{KHA}\)

\(\rArr\hat{OAH}+\hat{KAH}=\hat{OHA}+\hat{KHA}\rArr\hat{OAK}=\hat{OHK}\)

\(\hat{OAK}=90^{o}\rArr\hat{OHK}=90^{o}\)

=> KH là tiếp tuyến của (O)

c/

Ta có A và H cùng nhìn OK dưới 2 góc bằng nhau và \(=90^{o}\)

=> A và H cùng thuộc đường tròn đường kính OK => A;K;H;O cùng nằm trên 1 đường tròn


19 tháng 2 2020

 KH cắt BD tại M

Ta có HI//AC//ND ( cùng \(\perp AB\)) \(\Rightarrow\widehat{C}=\widehat{H_2}\) (đồng vị) và \(\widehat{H_1}=\widehat{H_3}\)   (đối đỉnh)

K là trung điểm AC và \(\Delta AHC\) vuông tại H \(\Rightarrow\)KH = KC \(\Rightarrow\Delta KHC\) cân tại K

\(\Rightarrow\widehat{C}=\widehat{H_3}=\widehat{H_1}=\widehat{H_2}\Rightarrow\Delta BHI=\Delta BHM\left(ch-gn\right)\)(có \(\widehat{H_1}=\widehat{H_2}\)HB chung)

\(\Rightarrow\widehat{BIH}=\widehat{BMH}=90^0\Rightarrow HM\perp BD\)

\(\Rightarrow\)BH  = BM.MD (hệ thức lượng trong \(\Delta BHD\) vuông tại H)

 Mà \(\Delta BMK~\Delta BTD\left(g.g\right)\) ( có \(\widehat{BMK}=\widehat{BTD}=90^0\) và góc B chung) 

 \(\Rightarrow\)BM.BD = BT.BK = BH     

 Vì BH =BI.BA (hệ thức lượng trong \(\Delta BHA\) vuông tại H)

\(\Rightarrow\)BT.BK=BI.BA \(\Rightarrow\Delta TBI~\Delta ABK\left(c-g-c\right)\)(có góc B chung và \(\frac{BT}{BI}=\frac{BK}{BA}\))

\(\Rightarrow\widehat{BTI}=\widehat{BAK}=90^0\Rightarrow TI\perp BK\)tại T

\(\Rightarrow\Delta BDT\) nội tiếp (J) có cạnh BD là đường kính \(\Rightarrow\Delta BDT\)vuông tại T

\(\Rightarrow TD\perp BK\) tại T \(\Rightarrow\)Từ T có TI và TD cùng \(\perp\) BK suy ra 3 điểm D, T, I thẳng hàng.

1. cho tam giác ABC.Tia Ax nằm khác phía với AC đối với đường thẳng AB thỏa mãn góc xAB bằng góc ACB.chứng minh Ax là tiếp tuyến của đường tròn ngoại tiếp tam giác ABC2.cho nửa đường tròn (O) đường kính AB trên đoạn AB lấy điểm M,gọi H là trung điểm của AM.đường thẳng qua H vuông góc với AB cắt (O) tại C .đường tròn đường kính MB cắt BC tại I. CM HI là tiếp tuyến của đường tròn...
Đọc tiếp

1. cho tam giác ABC.Tia Ax nằm khác phía với AC đối với đường thẳng AB thỏa mãn góc xAB bằng góc ACB.chứng minh Ax là tiếp tuyến của đường tròn ngoại tiếp tam giác ABC

2.cho nửa đường tròn (O) đường kính AB trên đoạn AB lấy điểm M,gọi H là trung điểm của AM.đường thẳng qua H vuông góc với AB cắt (O) tại C .đường tròn đường kính MB cắt BC tại I. CM HI là tiếp tuyến của đường tròn đường kính MB

3.cho nửa đường tròn tâm O đường kính AB, C thuộc nửa đường tròn.vẽ CH vuông góc với AB(H thuộc AB),M là trung điểm CH,BM cắt tiếp tuyến Ax của O tại P .chứng minh PC là tiếp tuyến của (O)

4.cho đường tròn O đường kính AB, M là một điểm trên OB.đường thẳng qua M vuông góc với AB tại M cắt O tại C và D. AC cắt BD tại P,AD cắt BC tại Q,AB cắt PQ tai I chứng minh IC,ID là tiếp tuyến của (O)

5.cho tam giác ABC nội tiếp đường tròn đường kính BC (AB<AC).T là một điểm thuộc OC.đường thẳng qua T vuông góc với BC cắt AC tại H và cắt tiếp tuyến tại A của O tại P.BH cắt (O) tại D. chứng minh PD là tiếp tuyến của O

6.cho tam giác ABC nội tiếp đường tròn O. phân giác góc BAC cắt BC tại D và cắt (O) tại M chứng minh BM là tiếp tuyến của đường tròn ngoại tiếp tam giác ABD

0
23 tháng 2 2020

Câu hỏi của Linh - Toán lớp 9 - Học toán với OnlineMath

Em tham khảo!

https://h.vn/hoi-dap/tim-kiem?q=cho+tam+gi%C3%A1c+abc+c%C3%B3+ab=6cm,ac=8cm,bc=10cm++a)+ch%E1%BB%A9ng+minh+tam+gi%C3%A1c+abc+vu%C3%B4ng+t%E1%BA%A1i+a++b)+t%C3%ADnh+g%C3%B3c+b+,c+v%C3%A0+%C4%91%C6%B0%E1%BB%9Dng+cao+ah+c%E1%BB%A7a+tam+gi%C3%A1c+abc++c)+t%C3%ADnh+b%C3%A1n+k%C3%ADnh+r+c%E1%BB%A7a+%C4%91%C6%B0%C6%A1ng+tr%C3%B2n+o+n%E1%BB%99i+ti%E1%BA%BFp+tam+gi%C3%A1c+abc&id=687912

Giúp mình với . ( giải chi tiết và cái hình luôn) Bài 1,Cho tam giác ABC nhọn. Đường tròn đường kính BC cắt AB ở N và cắt AC ở M. Gọi H làgiao điểm của BM và CN.a) Tính số đo các góc BMC và BNC.b) Chứng minh AH vuông góc BC.c) Chứng minh tiếp tuyến tại N đi qua trung điểm AH Bài 2, Cho đường tròn tâm (O; R) đường kính AB và điểm M trên đường tròn sao cho gócMAB = 60độ . Kẻ dây MN vuông góc với AB...
Đọc tiếp

Giúp mình với . ( giải chi tiết và cái hình luôn)
Bài 1,Cho tam giác ABC nhọn. Đường tròn đường kính BC cắt AB ở N và cắt AC ở M. Gọi H là
giao điểm của BM và CN.
a) Tính số đo các góc BMC và BNC.
b) Chứng minh AH vuông góc BC.
c) Chứng minh tiếp tuyến tại N đi qua trung điểm AH
Bài 2, Cho đường tròn tâm (O; R) đường kính AB và điểm M trên đường tròn sao cho góc
MAB = 60độ . Kẻ dây MN vuông góc với AB tại H.
a) Chứng minh AM và AN là các tiếp tuyến của đường tròn (B; BM).
b) Chứng minh MN2 = 4AH.HB .
c) Chứng minh tam giác BMN là tam giác đều và điểm O là trọng tâm của nó.
d) Tia MO cắt đường tròn (O) tại E, tia MB cắt (B) tại F. Chứng minh ba điểm N, E, F thẳng hàng.
Bài 3, Cho đường tròn (O; R) và điểm A cách O một khoảng bằng 2R, kẻ tiếp tuyến AB tới đường
tròn (B là tiếp điểm).
a) Tính số đo các góc của tam giác OAB
b) Gọi C là điểm đối xứng với B qua OA. Chứng minh điểm C nằm trên đường tròn O và AC
là tiếp tuyến của đường tròn (O).
c) AO cắt đường tròn (O) tại G. Chứng minh G là trọng tâm tam giác ABC.
Bài 4, Từ điểm A ở ngoài đường tròn (O; R) kẻ hai tiếp tuyến AB, AC (với B và C là hai tiếp điểm). Gọi H là giao điểm của OA và BC.
a) Chứng minh OA vuông góc BC và tính tích OH.OA theo R
b) Kẻ đường kính BD của đường tròn (O). Chứng minh CD // OA.
c) Gọi E là hình chiếu của C trên BD, K là giao điểm của AD và CE. Chứng minh K là trung điểm CE.

3
9 tháng 10 2017

Hình học lớp 9

21 tháng 4 2017

Tự giải đi em