K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác BMNC có MN//BC

nên BMNC là hình thang

Hình thang BMNC có \(\widehat{MBC}=\widehat{NCB}\)(ΔABC cân tại A)

nên BMNC là hình thang cân

b: Xét tứ giác AHBE có

M là trung điểm chung của AB và HE

=>AHBE là hình bình hành

Hình bình hành AHBE có \(\widehat{AHB}=90^0\)

nên AHBE là hình chữ nhật

7 tháng 1

Chúng ta sẽ giải từng phần của bài toán theo các bước sau:

a) Chứng minh rằng tứ giác ����BMNC là hình thang cân

  • Định nghĩa hình thang cân: Hình thang cân là tứ giác có hai cạnh đáy song song và hai cạnh bên bằng nhau.
  • Tính chất của tam giác cân: Trong tam giác ���ABC cân tại �A, có:
    • ��=��AB=AC
    • M là trung điểm của ��AB nên ��=��AM=MB
  • Vẽ đường thẳng ��MN:
    • Vì ��∥��MNBC và �M là trung điểm của ��AB, nên ��=��BM=MA.
    • Do đó, ta có thể nói rằng:
      • ��=��BM=MA và ��=��CN=NC (vì �M là trung điểm của ��AB và �N nằm trên ��AC).
  • Chứng minh:
    • Từ tính chất của hình thang, ta có: ��∥��vaˋ��=��BMCNvaˋBM=CN
    • Do đó, tứ giác ����BMNC là hình thang cân.

b) Chứng minh tứ giác ����AHBE là hình chữ nhật

  • Vẽ đường thẳng ��AH:
    • ��AH vuông góc với ��BC trên tia đối của tia ��MH.
  • Điểm �E:
    • Chọn điểm �E sao cho ��=��ME=MH.
  • Chứng minh:
    • Từ điều kiện ��⊥��AHBC, ta có: �� vuoˆng goˊc với ��AH vuoˆng goˊc với BC
    • Vì ��=��ME=MH, ta có thể nói rằng �E nằm trên đường thẳng ��AH và cách đều �M.
  • Tính chất của hình chữ nhật:
    • Trong tứ giác ����AHBE, ta có:
      • ��∥��AHBE và ��=��AH=BE
      • ��∥��ABEH và ��=��AB=EH
  • Kết luận:
    • Tứ giác ����AHBE vừa có hai cặp cạnh đối song song và bằng nhau, vừa có các góc vuông, nên:
      • ����AHBE là hình chữ nhật.

Kết luận

  • Tứ giác ����BMNC là hình thang cân.
  • Tứ giác ����AHBE là hình chữ nhật.
22 tháng 12 2021

a: Xét tứ giác BMNC có MN//BC

nên BMNC là hình thang

mà \(\widehat{B}=\widehat{C}\)

nên BMNC là hình thang cân

1, Cho tam giác ABC , M, N lần lượt là trung điểm của AB , AC a, Tứ giác BMNC là hình gì ? b, Gọi I là trung điểm của MN , đường thẳng AI cắt BC tại K . Tứ giác AMKN là hình gì ? Vì sao ? c, Tam giác ABC cần điều kiện gì để AMKN là hình thoi . d, Vói điều kiện trên của tam giác ABC . Vẽ KH vuông góc với AC tại H . Đường thẳng KH cắt MN tại E . Chứng minh tam giác AME vuông 2, Cho tam giác ABC cân tai A...
Đọc tiếp

1, Cho tam giác ABC , M, N lần lượt là trung điểm của AB , AC

a, Tứ giác BMNC là hình gì ?

b, Gọi I là trung điểm của MN , đường thẳng AI cắt BC tại K . Tứ giác AMKN là hình gì ? Vì sao ?

c, Tam giác ABC cần điều kiện gì để AMKN là hình thoi .

d, Vói điều kiện trên của tam giác ABC . Vẽ KH vuông góc với AC tại H . Đường thẳng KH cắt MN tại E . Chứng minh tam giác AME vuông

2, Cho tam giác ABC cân tai A lấy điểm M trên cạnh AB . Từ M kẻ đường thẳng song song với AC cắt BC tại E

a, Chứng minh tam giác BME cân

b, Trên tia đối của tia CA lấy điểm N sao cho CN = BM . Tứ giác MCNE là hình gì ?

c, Gọi I là trung điểm của CE . Chứng minh M,N,I thẳng hàng

d, Từ M kẻ đường thẳng song song với BC cắt AC tại F . Từ N kẻ đường thẳng song song với BC cắt Me tại K . Chứng minh F,I,K thẳng hàng

 

1

Bài 1: 

a: Xét ΔABC có 

M là trung điểm của AB

N là trung điểm của AC

Do đó: MN là đường trung bình

=>MN//BC

hay BMNC là hình thang

b: Xét ΔABK có MI//BK

nên MI/BK=AM/AB=1/2(1)

XétΔACK có NI//CK

nên NI/CK=AN/AC=1/2(2)

Từ (1)và (2) suy ra MI/BK=NI/CK

mà MI=NI

nên BK=CK

hay K là trug điểm của BC

Xét ΔABC có 

K là trung điểm của BC

M là trung điểm của AB

Do đó: KM là đường trung bình

=>KM//AN và KM=AN

hay AMKN là hình bình hành

11 tháng 12 2016

bạn tự vẽ hình nha

a)xét tứ giác AMCN có:

EA=EC(E trung điểm của AC )

EM=EN (gt)

mà AC cắt MN tại E

=>AMCN là hình bình hành(1)

ma AM vuông góc BC (gt)

=> góc AMC =90 độ (2)

từ 1 va 2 => AMCN là hình chữ nhật

b)ta có AMCN là hình chữ nhật (cmt)

=> MN =AC

mà AC=AB (tam giac ABC cân tại A)

=>MN=AB

c)mình không bít trình bày

mình đi chứng minh ANMC là hình bình hành => MN//AB

muốn MN vuông góc AC với AB để suy ra AMCN là hình vuông thì buộc AC vuông góc AB

=> tam giác abc cân tại A phải thêm điều kiện vuông nữa

hướng là vậy bạn tự trình bày nha

4 tháng 1 2017

a) Xét tứ giác ADME có:

∠(DAE) = ∠(ADM) = ∠(AEM) = 90o

⇒ Tứ giác ADME là hình chữ nhật (có ba góc vuông).

b) Ta có ME // AB ( cùng vuông góc AC)

M là trung điểm của BC (gt)

⇒ E là trung điểm của AC.

Ta có E là trung điểm của AC (cmt)

Chứng minh tương tự ta có D là trung điểm của AB

Do đó DE là đường trung bình của ΔABC

⇒ DE // BC và DE = BC/2 hay DE // MC và DE = MC

⇒ Tứ giác CMDE là hình bình hành.

c) Ta có DE // HM (cmt) ⇒ MHDE là hình thang (1)

Lại có HE = AC/2 (tính chất đường trung tuyến của tam giác vuông AHC)

DM = AC/2 (DM là đường trung bình của ΔABC) ⇒ HE = DM (2)

Từ (1) và (2) ⇒ MHDE là hình thang cân.

d) Gọi I là giao điểm của AH và DE. Xét ΔAHB có D là trung điểm của AB, DI // BH (cmt) ⇒ I là trung điểm của AH

Xét ΔDIH và ΔKIA có

IH = IA

∠DIH = ∠AIK (đối đỉnh),

∠H1 = ∠A1(so le trong)

ΔDIH = ΔKIA (g.c.g)

⇒ ID = IK

Tứ giác ADHK có ID = IK, IA = IH (cmt) ⇒ DHK là hình bình hành

⇒ HK // DA mà DA ⊥ AC ⇒ HK ⊥ AC

19 tháng 12 2016

a)Xét tứ giác ABDC : 
AM = MD ; BM = MC 
=>Tứ giác ABDC là hình bình hành 
Mà góc BAC = 90 = >Tứ giác ABDC là hcn 
b)Xét tam giác AID : 
AH= HI ; AM = MD (gt) 
=> HM song song ID ( đường tb) 
=>tứ giác BIDC la ht 
AC la trung truc AI = > tam giac ABI can tai B 
=> AB = BI ma AB = DC ( ABDC la hcn )=> BI = DC 
hay BIDC la hinh thang can 
c) Ta có góc ACB = góc AHM = góc AEF 
góc BAM = góc ABM 
mà góc ABM + góc ACM = 90 => góc AEF + góc BAM = 90 độ hay AM vuông góc EF ( đccm)

19 tháng 12 2016

tks bn