Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)tính dễ
b)chứng minh nó = quy nạp thôi
n=1 và n=k; n=k+1;... trong trang cá nhân mk lm r` đó bn chịu khó tìm lại
\(C=1+3+3^2+3^3+...+3^{15}\)
=> \(3C=3+3^2+3^3+3^4+...+3^{16}\)
=> \(3C-C=3^{16}-1\)
=>\(2C=3^{16}-1\)
=>\(C=\frac{3^{16}-1}{2}\)
Câu D tương tự
4
a)\(S=1+2+2^2+...+2^{10}\)
\(2S=2+2^2+2^3+...+2^{11}\)
\(2S-S=\left(2+2^2+2^3+...+2^{11}\right)-\left(1+2+2^2+...+2^{10}\right)\)
\(S=2^{11}-1\)
b)\(S=1+3+3^2+...+3^6\)
\(3S=3+3^2+3^3+...+3^7\)
\(3S-S=\left(3+3^2+3^3+...+3^7\right)-\left(1+3+3^2+...+3^6\right)\)
\(2S=3^7-1\)
\(S=\frac{3^7-1}{2}\)
a.\(S=1+2+2^2+...+2^{10}\)
\(2S=2+2^2+2^3+...+2^{11}\)
\(\Rightarrow2S-S=S=\left(2+2^2+2^3+...+2^{11}\right)-\left(1+2+2^2+...+2^{10}\right)\)
\(=2^{11}-1\)
b) \(S=1+3+3^2+...+3^6\)
\(3S=3+3^2+3^3+...+3^7\)
\(\Rightarrow3S-S=2S=\left(3+3^2+3^3+...+3^7\right)-\left(1+3+3^2+...+3^6\right)\)
\(2S=3^7-1\Rightarrow S=\frac{3^7-1}{2}\)
a, A = 1+7+72+73+...+710
7A = 7+72+73+74+...+711
6A = 7A - A = 711 - 1
=> A = \(\frac{7^{11}-1}{6}\)
b, B = 1+3+32+33+...+3100
3B = 3+32+33+34+....+3101
2B = 3B - B = 3101 - 1
=> B = \(\frac{3^{101}-1}{2}\)
Ta có : A = 1 + 2 + 3 + ... + 2008
\(A=\frac{\left(2008+1\right)\left[\left(2008-1\right)\div1+1\right]}{2}\)
\(A=\frac{2009.2008}{2}\)
\(A=2017036\)
Ta có: B = 1 + 2 + 3 + ... + 1010
\(B=\frac{\left(1010+1\right)\left[\left(1010-1\right):1+1\right]}{2}\)
\(B=\frac{1011.1010}{2}\)
\(B=510555\)
\(A=1+2+3+4+5+...+2008\)
\(A=\left(2008+1\right)\left(\left(2008-1\right):1+1\right):2=2009.2008:2\)
\(=2009.1004=2017036\)
\(B=1+2+3+4+...+1010\)
\(B=\left(1010+1\right)\left(\left(1010-1\right):1+1\right):2=1011.\left(1010:2\right)\)
\(=1011.505=510555\)
\(C=2+5+8+11+...+302\)
\(C=\left(302+2\right)\left(\left(302-2\right):3+1\right):2=304.101:2\)
\(=15352\)
\(D=3+3^2+3^3+3^4+...+3^{2019}\)
\(3D=3^2+3^3+3^4+...+3^{2020}\)
\(3D-D=\left(3^2+3^3+3^4+...+3^{2020}\right)-\left(3+3^2+3^3+3^4+...+3^{2019}\right)\)
\(2D=3^{2020}-3\)
\(\Rightarrow D=\frac{3^{2020}-3}{2}\)
\(E=4^{10}+4^{11}+4^{12}+...+4^{100}\)
\(4E=4^{11}+4^{12}+4^{13}+...+4^{101}\)
\(4E-E=\left(4^{11}+4^{12}+4^{13}+...+4^{101}\right)-\left(4^{10}+4^{11}+4^{12}+...+4^{100}\right)\)
\(3E=4^{101}-4^{10}\)
\(E=\frac{4^{101}-4^{10}}{3}\)
T=32+33+....+310
3T=33+34+......+311
3T-T=311-32
T=(311-32):2 (Nếu số nhỏ thì có thể tính ra STN.Còn lớn thì để nguyên như vậy.)
3025
3025