
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a) ta có: \(A=\frac{4n+1}{2n+3}=\frac{4n+6-5}{2n+3}=\frac{2.\left(2n+3\right)-5}{2n+3}=2-\frac{5}{2n+3}\)
Để A nhận giá trị nguyên
=> 5/2n+3 thuộc Z
=> 5 chia hết cho 2n+3
=> 2n+3 thuộc Ư(5)={1;-1;5;-5}
nếu 2n+3 = 1 => 2n = -2 => n = -1 (TM)
2n+3 = -1 => 2n = -4 => n = -2 (TM)
2n+3 = 5 => 2n = 2 => n = 1 (TM)
2n+3 = -5 => 2n = 8 => n = -4 (TM)
KL:...
b) tìm n thuộc Z để A là phân số tối giản
Để A là phân số tối giản
\(\Rightarrow n\notin\left\{-1;-2;1;-4\right\}\)
a) Để A nhận giá trị nguyên thì 4n+1 phải chia hết cho 2n+3
\(\Rightarrow4n+1⋮2n+3\)(1)
Lại có:\(\left(2n+3\right)\times2⋮2n+3\)
\(\Rightarrow4n+6⋮2n+3\)(2)
Từ (1) và (2) suy ra:
\(\left(4n+6\right)-\left(4n+1\right)⋮2n+3\)
\(\Rightarrow4n+6-4n-1⋮2n+3\)
\(\Rightarrow\left(4n-4n\right)+\left(6-1\right)⋮2n+3\)
\(\Rightarrow5⋮2n+3\)
\(\Rightarrow2n+3\inƯ\left(5\right)\)
mà Ư(5)=(-5;-1;1;5)
\(\Rightarrow2n+3\in\left(-5;-1;1;5\right)\)
\(\Rightarrow2n\in\left(-8;-4;4;8\right)\)
\(\Rightarrow n\in\left(-4;-2;2;4\right)\)
Vậy với \(n\in\left(-4;-2;2;4\right)\)

Để \(A\in Z\Leftrightarrow\left(n+8\right)⋮\left(2n-5\right)\)
Giả sử\(\left(n+8\right)⋮\left(2n-5\right)\)
\(\Leftrightarrow2\left(n+8\right)⋮\left(2n-5\right)\)
\(\Leftrightarrow2n+16⋮\left(2n-5\right)\)
\(\Leftrightarrow2n-5+21⋮\left(2n-5\right)\)
Do \(2n-5⋮2n-5\)
\(\Rightarrow21⋮\left(2n-5\right)\)
\(\Rightarrow\left(2n-5\right)\inƯ\left(21\right)\)
Ta có bảng sau:
2n-5 | -21 | -7 | -3 | -1 | 1 | 3 | 7 | 21 |
2n | -16 | -2 | 2 | 4 | 6 | 8 | 12 | 26 |
n | -8 | -1 | 1 | 2 | 3 | 4 | 6 | 13 |
Do \(n\inℕ^∗\Rightarrow n\in\left\{1;2;3;4;6;13\right\}\)

\(a,\text{ }A=\frac{n+1}{n-2}\inℤ\Leftrightarrow n+1⋮n-2\)
\(\Rightarrow n-2+3⋮n-2\)
\(n-2⋮n-2\)
\(\Rightarrow3⋮n-2\)
\(\Rightarrow n-2\inƯ\left(3\right)\)
đến đây bn liệt kê ước của 3 r` lm tiếp!
b, \(A=\frac{n+1}{n-2}=\frac{n-2+3}{n-2}=\frac{n-2}{n-2}+\frac{3}{n-2}=1+\frac{3}{n-2}\)
để A đạt giá trị lớn nhất thì \(\frac{3}{n-2}\) lớn nhất
=> n-2 là số nguyên dương nhỏ nhất
=> n-2 = 1
=> n = 3
vậy n = 3 và \(A_{max}=1+\frac{3}{1}=4\)

a)\(A=3-\frac{4}{3n+2}\)=>\(3n+2\)là ước của 4 =>\(n=0;n=-1;n=-2\)

1 ) 10 \(⋮\) n
=> n \(\in\) Ư ( 10 )
Ư ( 10 ) = { 1 , 2 , 5 , 10 }
Vậy n \(\in\) { 1 ; 2 ; 5 ; 10 }
2 ) 12 : \(⋮\) ( n - 1 )
=> n - 1 \(\in\) Ư ( 12 )
=> Ư ( 12 ) = { 1 ; 12 ; 2 ; 6 ; 3 ; 4 }
n - 1 | 1 | 12 | 2 | 6 | 3 | 4 |
n | 2 | 13 | 3 | 7 | 4 | 5 |
Vậy n \(\in\) { 2 , 13 , 3 , 7 , 4 , 5 }
3 ) 20 \(⋮\) ( 2n + 1 )
=> 2n + 1 \(\in\) Ư ( 20 )
=> Ư ( 20 ) = { 1 ; 20 ; 2 ; 10 ; 4 ; 5 }
2n+1 | 1 | 20 | 2 | 10 | 4 | 5 |
n | 0 | 19/2 ( loại ) | 1/2 ( loại ) | 9/2 ( loại ) | 3/2 ( loại ) | 2 |
Các trường hợp loại , vì n \(\in\) N
Vậy n thuộc { 0 , 2 }

a) -3 \(⋮\)3n+1
=> 3n+1 \(\in\)Ư(-3)
=> 3n+1 \(\in\){-1;1;3;-3}
Ta co bang:
3n+1 | -3 | -1 | 1 | 3 |
n | -4/3 | -2/3 | 0 | 2/3 |
loại | loại | chọn | loại |
KL
b) 8\(⋮\)2n+1
=> 2n+1\(\in\) Ư{8}
=>2n+1 \(\in\){-1;1;4;2;8;-2;-4;-8}
vì 2n là số chẵn => 2n+1 là số lẻ
=> 2n+1\(\in\){-1;1}
2n+1 | -1 | 1 |
n | -1 | 0 |
chọn | chọn |
c)n+1 \(⋮\)n-2
=> n-2 +3 \(⋮\)n-2
Vì n-2\(⋮\)n-2 mà n-2+3\(⋮\)n-2
=>3\(⋮\)n-2
=>n-2\(\in\) Ư{3}
=>n-2\(\in\){-1;-3;1;3}
n-2 | -1 | 1 | -3 | 3 |
n | 1 | 3 | -1 | 5 |
chọn | chọn | chọn | chọn |
d)3n+2 \(⋮\)n-1
=>3(n-1)+5 \(⋮\)n-1
Vì 3(n-1)\(⋮\)n-1 mà 3(n-1)+5\(⋮\)n-1
=>5\(⋮\)n-1
=>n-1\(\in\)Ư{5}
=>n-1\(\in\){-5;-1;1;5}
n-1 | -5 | -1 | 1 | 5 |
n | -4 | 0 | 2 | 6 |
chọn | chọn | chọn | chọn |
e)3-n:2n+1
=> 2(3-n)\(⋮\)2n+1
=>6-2n\(⋮\)2n+1
=>7-(2n+1)\(⋮\)2n+1
Vì -(2n+1)\(⋮\)2n+1 mà 7 -(2n+1) \(⋮\)2n+1
=>2n+1 \(\in\)Ư{7}
=>2n+1\(\in\){-7;-1;1;7}
2n+1 | -7 | -1 | 1 | 7 |
n | -4 | -1 | 0 | 3 |
chọn | chọn | chọn | chọn |

1. Ta có : 3n + 3 \(⋮n-1\Rightarrow3n-3+6⋮n-1\Rightarrow3\left(n-1\right)+6⋮n-1\)
Vì 3(n - 1) \(⋮\)n - 1
=> 6 \(⋮n-1\)
=> n - 1 \(\inƯ\left(6\right)=\left\{1;2;3;6;-1;-2;-3;-6\right\}\)
<=> \(n\in\left\{0;2;3;4;7\right\}\)
2) 2n + 6 \(⋮n+1\Rightarrow2\left(n+1\right)+4⋮n+1\)
Vì 2(n + 1) \(⋮\)n + 1
=> 4 \(⋮n+1\)
=> \(n+1\in\left\{1;2;4;-1;-2;-4\right\}\)
<=> n \(\in\left\{0;1;3\right\}\)
3. 10n + 20 \(⋮2n+1\Leftrightarrow5\left(2n+1\right)+15⋮2n+1\)
Vì 5(2n + 1) \(⋮\)2n + 1
<=> 15 \(⋮\)2n + 1
=> 2n + 1 \(Ư\left(15\right)=\left\{1;3;5;15-1;-3;-5;-15\right\}\)
<=> \(n\in\left\{0;1;2;7\right\}\)
TL
3n + 29 chia hết cho n + 3 <=> 20 chia hết chi n+3 <=> n+3 thuộc Ư(20)={1,2,4,5,10,20}
Với n + 3 = 1 => n không thuộc N (loại)
Với n + 3 = 2 => n không thuộc N (loại)
Với n + 3 = 4 => n = 1
Với n + 3 = 5 => n = 2
Với n+3 = 10 => n = 7
Với n + 3 = 20 => n = 17

Ta có\(15-2n⋮n+1\)
\(\Rightarrow17-2\left(n+1\right)⋮n+1\)
\(\Rightarrow17⋮n+1\)
\(\Rightarrow n+1\inƯ\left(17\right)=\left\{1;17\right\}\)
\(\Rightarrow n=\left\{0;16\right\}\)
Ta có \(6n+9⋮4n-1\)
\(\Rightarrow4\left(6n+9\right)⋮4n-1\)
\(\Rightarrow24n+36⋮4n-1\)
\(\Rightarrow6\left(4n-1\right)+42⋮4n-1\)
\(\Rightarrow42⋮4n-1\)
\(\Rightarrow4n-1\inƯ\left(42\right)=\left\{1;2;3;6;7;14;21;42\right\}\)
mà \(n\in N\Rightarrow n=\left\{1;2\right\}\)

ta có: \(n+1⋮2n+1\)
=>\(2n+2⋮2n+1\)
=>\(2n+1+1⋮2n+1\)
=>\(1⋮2n+1\)
=>\(2n+1\in\left\{1;-1\right\}\)
=>\(2n\in\left\{0;-2\right\}\)
=>\(n\in\left\{0;-1\right\}\)