K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 12 2024

Không có số nào chia được cho 0.

 

24 tháng 12 2024

0

 

2 tháng 5 2018

bucminh Bài của lớp 5 :v

7 tháng 11 2021

1+1=2        mình biết bài này rất khó nên cố gắng làm nếu sai xin bạn hãy chỉ cho mìn cách làm đúng

7 tháng 11 2021

1+1=2

CÓ GÌ KHÔNG?

AH
Akai Haruma
Giáo viên
7 tháng 9 2017

Lời giải:

\(A=\frac{x^2}{1-x}+\frac{y^2}{1-y}+\frac{z^2}{1-z}=-(x+1)+\frac{1}{1-x}-(y+1)+\frac{1}{1-y}-(z+1)+\frac{1}{1-z}\)

\(\Leftrightarrow A=-6+(1-x)+\frac{1}{1-x}+(1-y)+\frac{1}{1-y}+(1-z)+\frac{1}{1-z}\)

Do \(1>x,y,z\) nên áp dụng BĐT AM-GM cho các số dương ta có:

\(\left\{\begin{matrix} (1-x)+\frac{1}{1-x}\geq 2\\ (1-y)+\frac{1}{1-y}\geq 2\\ (1-z)+\frac{1}{1-z}\geq 2\end{matrix}\right.\Rightarrow A\geq -6+2+2+2\)

\(\Leftrightarrow A\geq 0\)

Vậy \(A_{\min}=0\). Dấu bằng xảy ra khi \(x=y=z=0\)

7 tháng 9 2017

k phải cộng z^2/1-z mà là \(\dfrac{1}{x+y}+x+y\)

18 tháng 2 2021

thì mình chịu

AH
Akai Haruma
Giáo viên
20 tháng 7 2017

Bài 1:

Đặt \(\left\{\begin{matrix} x+y=a\\ xy=b\end{matrix}\right.\Rightarrow x^2+y^2+xy=a^2-b=3\)

\(x,y\geq 0\rightarrow b\geq 0\rightarrow a^2=3+b\geq 3\)

Biến đổi:

\(T=(x+y)^3-3xy(x+y)-[(x+y)^2-2xy]\)

\(\Leftrightarrow T=a^3-3ab-a^2+2b\)

\(\Leftrightarrow T=a^3-3a(a^2-3)-a^2+2(a^2-3)=-2a^3+a^2+9a-6\)

Xét đạo hàm và lập bảng biến thiên hàm trên với điều kiện \(a\geq \sqrt{3}\) ta thu được \(T_{\max}=3\sqrt{3}-3\Leftrightarrow a=\sqrt{3}\Leftrightarrow (x,y)=(\sqrt{3},0)\)

Hàm không có min.

mk ko bt:((huhuhu

30 : một nửa *3 =6 nha!

18 tháng 12 2016

Đặt A=40triệu, d1=500ngàn, d2=1,5triệu; r1=0,85% ; r2=1,15%

Số tiền phải trả còn lại sau 12 tháng đầu tiên là
\(P=A\left(1-r_1\right)^{12}-d_1.\frac{\left(1-r_1\right)^{12}-1}{\left(1-r_1\right)-1}\approx30378140,11\) (đồng)

Gọi x là số tháng hoàn trả hết nợ sau năm thứ nhất

Ta có \(P\left(1-r_2\right)^x-d_2\frac{\left(1-r_2\right)^x-1}{\left(1-r_2\right)-1}=0\)

Giải pt 1ẩn x, ta tìm được \(x\approx18,101\) (sang tháng thứ 19 mới trả hết nợ)

Vậy cần 12+19=31 tháng mới trả hết nợ

3 tháng 9 2023

\(P=\dfrac{a}{2b+3c}+\dfrac{b}{2c+3a}+\dfrac{c}{2a+3b}\left(a;b;c>0\right)\)

\(\Leftrightarrow P=\dfrac{a^2}{2ab+3ac}+\dfrac{b^2}{2bc+3ab}+\dfrac{c^2}{2ac+3bc}\)

Áp dụng bất đẳng thức \(\dfrac{a^2}{m}+\dfrac{b^2}{n}+\dfrac{c^2}{q}\ge\dfrac{\left(a+b+c\right)^2}{m+n+q}\)

\(\Leftrightarrow P\ge\dfrac{\left(a+b+c\right)^2}{5\left(ab+bc+ca\right)}=\dfrac{a^2+b^2+c^2+2\left(ab+bc+ca\right)}{5\left(ab+bc+ca\right)}\left(1\right)\)

Theo bất đẳng thức Cauchy :

\(\left\{{}\begin{matrix}a^2+b^2\ge2ab\\b^2+c^2\ge2bc\\a^2+c^2\ge2ac\end{matrix}\right.\)

\(\Rightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)

\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\)

\(\left(1\right)\Leftrightarrow P=\dfrac{a^2}{2ab+3ac}+\dfrac{b^2}{2bc+3ab}+\dfrac{c^2}{2ac+3bc}\ge\dfrac{ab+bc+ca+2\left(ab+bc+ca\right)}{5\left(ab+bc+ca\right)}\)

\(\Leftrightarrow P\ge\dfrac{3\left(ab+bc+ca\right)}{5\left(ab+bc+ca\right)}=\dfrac{3}{5}\)

Dấu "=" xảy ra khi \(a=b=c\)

Vậy \(Min\left(P\right)=\dfrac{3}{5}\left(tại.a=b=c\right)\)

4 tháng 9 2023

Bổ sung chứng minh Bất đẳng thức :

\(\dfrac{a^2}{m}+\dfrac{b^2}{n}+\dfrac{c^2}{q}\ge\dfrac{\left(a+b+c\right)^2}{m+n+q}\)

Theo BĐT Bunhiacopxki :

\(\left(\dfrac{a}{\sqrt[]{m}}\right)^2+\left(\dfrac{b}{\sqrt[]{n}}\right)^2+\left(\dfrac{c}{\sqrt[]{q}}\right)^2.\left[\left(\sqrt[]{m}\right)^2+\left(\sqrt[]{n}\right)^2+\left(\sqrt[]{q}\right)^2\right]\ge\left(a+b+c\right)^2\)

\(\Leftrightarrow\dfrac{a^2}{m}+\dfrac{b^2}{n}+\dfrac{c^2}{q}\ge\dfrac{\left(a+b+c\right)^2}{m+n+q}\)