Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này mình làm vậy nè, nếu có sai thì thông cảm nha ><
Đặt A = 1.2.3 + 2.3.4 + 3.4.5 +...+ 2016.2017.2018
4A = 1.2.3.(4-0) + 2.3.4.(5-1) + 3.4.5.(6-2) +...+ 2016.2017.2018.(2019-2015)
4A = (1.2.3.4 + 2.3.4.5 + 3.4.5.6 +...+ 2016.2017.2018.2019) - (0.1.2.3 + 1.2.3.4 + 2.3.4.5 +...+ 2015.2016.2017.2018)
4A = 2016.2017.2018.2019 - 0.1.2.3
A = \(\frac{\text{2016.2017.2018.2019}}{4}\)= 504.2017.2018.2019
1: so sánh 2016/2017+2017/2018
vì 2016/2017 > 1/2017 >1/2018 =
> 2016/2017+2017/2018 >1/2018+2017/2018=1
vậy .....
\(=\dfrac{2017}{2018}\left(\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{3}{4}+\dfrac{6}{5}\right)=\dfrac{2017}{2018}\cdot\dfrac{9}{10}=\dfrac{18153}{20180}\)
\(A=\left(\frac{1}{4}-1\right)\left(\frac{1}{5}-1\right)\left(\frac{1}{6}-1\right)...\left(\frac{1}{2018}-1\right)\)
\(-A=\left(1-\frac{1}{4}\right)\left(1-\frac{1}{5}\right)\left(1-\frac{1}{6}\right)...\left(1-\frac{1}{2018}\right)\)
\(-A=\frac{3}{4}\cdot\frac{4}{5}\cdot\frac{5}{6}\cdot...\cdot\frac{2017}{2018}\)
\(-A=\frac{3}{2018}\)
\(A=-\frac{3}{2018}\)
\(\left(\frac{1}{4}-1\right).\left(\frac{1}{5}-1\right)...\left(\frac{1}{2017}-1\right)\left(\frac{1}{2018}-1\right)\)
= \(-\frac{3}{4}.\frac{-4}{5}....\frac{-2016}{2017}.\frac{-2017}{2018}\)
= \(\frac{\left(-3\right).\left(-4\right)....\left(-2016\right).\left(-2017\right)}{4.5...2017.2018}\)
= \(\frac{\left(-3\right).4.5.6...2016.2017}{4.5..2017.2018}\)
= \(\frac{-3}{2018}\)
=> (x+2020)/5=(x+2020)/6=(x+2020)/3+(x+2020)/2
=>(x+2020)(1/5+1/6)=(x+2020)(1/3+1/2)
Với x+2020=0=>x=-2020
Với x+2020 khác 0=>1/5+1/6=1/3+1/2 ,vô lí
Vậy x=-2020
Đặt biểu thức cần tính là A
\(5A=1-\dfrac{1}{5}+\dfrac{1}{5^2}-\dfrac{1}{5^3}+...+\dfrac{1}{5^{2016}}-\dfrac{1}{5^{2017}}\)
\(6A=5A+A=1-\dfrac{1}{5^{2018}}\)
\(A=\dfrac{1}{6}\left(1-\dfrac{1}{5^{2018}}\right)\)