Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho A = 1/2 .3/4.5/6.....199/200.Chứng tỏ rằng B mũ 2 <1/201.Bạn có làm dược ko ?
a)
\(P=\dfrac{5}{6}+\dfrac{5}{12}+\dfrac{5}{20}+\dfrac{5}{30}+\dfrac{5}{42}+\dfrac{5}{56}+\dfrac{5}{72}+\dfrac{5}{90}\\ =\dfrac{5}{2.3}+\dfrac{5}{3.4}+\dfrac{5}{4.5}+\dfrac{5}{5.6}+\dfrac{5}{6.7}+\dfrac{5}{7.8}+\dfrac{5}{8.9}+\dfrac{5}{9.10}\\ \Rightarrow\dfrac{1}{5}P=\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{9.10}\\ =\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{9}-\dfrac{1}{10}\\ =\dfrac{1}{2}-\dfrac{1}{10}=\dfrac{5}{10}-\dfrac{1}{10}\\ =\dfrac{4}{10}=\dfrac{2}{5}\\ \Rightarrow P=\dfrac{2}{5}\cdot5=2\)
a: \(\Leftrightarrow\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{4}< x< \dfrac{1}{48}-\dfrac{1}{16}+\dfrac{1}{6}\)
\(\Leftrightarrow\dfrac{6}{12}-\dfrac{4}{12}-\dfrac{3}{12}< x< \dfrac{1}{48}-\dfrac{3}{48}+\dfrac{8}{48}\)
\(\Leftrightarrow\dfrac{-1}{12}< x< \dfrac{1}{8}\)
\(\Leftrightarrow-2< 24x< 3\)
=>x=0
b: \(\Leftrightarrow\dfrac{9-10}{12}< \dfrac{x}{12}< 1-\dfrac{8-3}{12}=\dfrac{7}{12}\)
=>-1<x<7
hay \(x\in\left\{0;1;2;3;4;5;6\right\}\)
S = \(\dfrac{1}{4}+\dfrac{1}{16}+\dfrac{1}{36}+......+\dfrac{1}{10000}\)
\(\Rightarrow S=\dfrac{1}{4.1}+\dfrac{1}{4.4}+\dfrac{1}{4.9}+.....+\dfrac{1}{4.2500}\)
\(\Rightarrow S=\dfrac{1}{4.\left(1+\dfrac{1}{4}+\dfrac{1}{9}+...+\dfrac{1}{2500}\right)}< \dfrac{1}{2}\)
\(\RightarrowĐPCM\)
Đáp án nè:
Đặt A=\(\dfrac{1}{3}-\dfrac{2}{3^2}+\dfrac{3}{3^3}-\dfrac{4}{3^4}+...+\dfrac{99}{3^{99}}-\dfrac{100}{3^{99}}\)
3A=\(\dfrac{1}{1}-\dfrac{2}{3}+\dfrac{3}{3^2}-\dfrac{4}{3^3}+...+\dfrac{99}{3^{98}}-\dfrac{100}{3^{99}}\)
3A+A=\(\left(\dfrac{1}{1}-\dfrac{2}{3}+\dfrac{3}{3^2}-\dfrac{4}{3^3}+...+\dfrac{99}{3^{98}}-\dfrac{100}{3^{99}}\right)+\left(\dfrac{1}{3}-\dfrac{2}{3^2}+\dfrac{3}{3^3}-\dfrac{4}{3^4}+...+\dfrac{99}{3^{99}}-\dfrac{100}{3^{100}}\right)\)
4A=\(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3^2}-\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}-\dfrac{1}{3^{100}}\)
4A bé hơn(sorry tớ không thấy dấu bé hơn)\(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3^2}-\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}\)
Đặt B=\(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3^2}-\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}\)
3B=\(3-1+\dfrac{1}{3}-\dfrac{1}{3^2}+...+\dfrac{1}{3^{98}}\)
4B=\(3-\dfrac{1}{3^{99}}\) bé hơn 3 \(\Rightarrow\)B bé hơn \(\dfrac{3}{4}\)
\(\Rightarrow\) 4A bé hơn\(\dfrac{3}{4}\Rightarrow\)A bé hơn \(\dfrac{3}{16}\)
Tick cho mình nha , ngồi đánh máy tính mỏi cả mắt lun
Chúc học tốt
A = \(\dfrac{4}{5.9}+\dfrac{4}{9.13}+...+\dfrac{4}{403.407}\)
A = 4( \(\dfrac{1}{5.9}+\dfrac{1}{9.13}+...+\dfrac{1}{403.407}\) )
A = 4 ( \(\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-...-\dfrac{1}{407}\) )
A = 4 . ( \(\dfrac{1}{5}-\dfrac{1}{407}\) )
A = 4 . \(\dfrac{402}{2035}\)
A = \(\dfrac{1608}{2035}\)
tự so sánh đi