K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2024
Cho tam giác abc nhọn có ba đỉnh nằm trên đường tròn (O), đường cao AD và BF cắt nhau tại H. AD cắt đường tròn (O) tại E. Chứng minh góc DBE bằng góc DAC bằng góc DBH

Chúng ta cần chứng minh rằng:

∠DBE=∠DAC=∠DBH\angle DBE = \angle DAC = \angle DBH Chứng minh góc ∠DBE=∠DAC\angle DBE = \angle DAC:
  • A,B,CA, B, C là các điểm trên đường tròn (O), các tam giác ABCABCADEADE đều là các tam giác nội tiếp.

  • ADAD là đường cao từ AA tới BCBC nên ∠ADE\angle ADE = 90 độ.

  • Vậy:

∠DAC=∠DBE (goˊc cuˋng cha˘ˊn cung DE trong đường troˋn O)\angle DAC = \angle DBE \text{ (góc cùng chắn cung DE trong đường tròn O)} Chứng minh góc ∠DAC=∠DBH\angle DAC = \angle DBH:
  • Từ chứng minh trên, ta đã có ∠DAC=∠DBE\angle DAC = \angle DBE

  • Ta có BFBF là đường cao từ BB tới ACAC, do đó:

∠DBE=∠DBH (goˊc tạo bởi đường cao từ đỉnh vaˋ goˊc tạo bởi hai đường cao ca˘ˊt nhau tại H trong đường troˋn)\angle DBE = \angle DBH \text{ (góc tạo bởi đường cao từ đỉnh và góc tạo bởi hai đường cao cắt nhau tại H trong đường tròn)}
  • Vậy:

∠DAC=∠DBE=∠DBH\angle DAC = \angle DBE = \angle DBH

Ta đã chứng minh được rằng: ∠DBE=∠DAC=∠DBH\angle DBE = \angle DAC = \angle DBH.

Nếu bạn có bất kỳ thắc mắc nào khác hoặc cần giải thích thêm, mình luôn sẵn sàng giúp đỡ! 😊

14 tháng 3 2019

Đề kiểm tra Toán 9 | Đề thi Toán 9

b) Xét tứ giác BFEC có:

∠(BFC) = 90 0  (Do CF là đường cao)

∠(BEC ) =  90 0  (Do BE là đường cao)

⇒ E và F cùng nhìn BC dưới một góc bằng nhau

⇒ Tứ giác BFEC nội tiếp được đường tròn

⇒ Bốn điểm B, E, F, C cùng nằm trên đường tròn

a: Xét (O) có

ΔABM nội tiếp

AM là đường kính

Do đó: ΔABM vuông tại B

=>BM\(\perp\)AB

mà CH\(\perp\)AB

nên CH//BM

Xét (O) có

ΔACM nội tiếp

AM là đường kính

Do đó: ΔACM vuông tại C

=>AC\(\perp\)CM

mà BH\(\perp\)AC

nên BH//CM

Xét tứ giác BHCM có

BH//CM

BM//CH

Do đó: BHCM là hình bình hành

b:

Xét ΔABC có

BE,CF là các đường cao

BE cắt CF tại H

Do đó: H là trực tâm của ΔABC

=>AH\(\perp\)BC tại D

Xét (O) có

\(\widehat{ABC}\) là góc nội tiếp chắn cung AC

\(\widehat{AMC}\) là góc nội tiếp chắn cung AC

Do đó: \(\widehat{ABC}=\widehat{AMC}\)

Ta có: \(\widehat{ABC}+\widehat{BAN}=90^0\)(ΔADB vuông tại D)

\(\widehat{AMC}+\widehat{MAC}=90^0\)(ΔACM vuông tại C)

mà \(\widehat{ABC}=\widehat{AMC}\)

nên \(\widehat{BAN}=\widehat{MAC}\)

Xét (O) có

ΔANM nội tiếp

AM là đường kính

Do đó: ΔANM vuông tại N

=>AN\(\perp\)NM

mà AN\(\perp\)BC

nên BC//NM

Ta có: \(\widehat{CHD}=\widehat{ABC}\)(=90 độ-góc FCB)

\(\widehat{ABC}=\widehat{ANC}\)

Do đó: \(\widehat{CHD}=\widehat{ANC}\)

=>ΔCHN cân tại C

=>CH=CN

mà CH=BM

nên BM=CN

Xét tứ giác BCMN có BC//MN

nên BCMN là hình thang

Hình thang BCMN có BM=CN

nên BCMN là hình thang cân

17 tháng 5 2017

Đường tròn c: Đường tròn qua B_1 với tâm O Đoạn thẳng f: Đoạn thẳng [A, B] Đoạn thẳng g: Đoạn thẳng [A, C] Đoạn thẳng h: Đoạn thẳng [B, C] Đoạn thẳng l: Đoạn thẳng [P, C] Đoạn thẳng m: Đoạn thẳng [M, A] Đoạn thẳng n: Đoạn thẳng [B, N] O = (1.97, 2.92) O = (1.97, 2.92) O = (1.97, 2.92) Điểm A: Điểm trên c Điểm A: Điểm trên c Điểm A: Điểm trên c Điểm B: Điểm trên c Điểm B: Điểm trên c Điểm B: Điểm trên c Điểm C: Điểm trên c Điểm C: Điểm trên c Điểm C: Điểm trên c Điểm P: Giao điểm của c, j Điểm P: Giao điểm của c, j Điểm P: Giao điểm của c, j Điểm M: Giao điểm của c, k Điểm M: Giao điểm của c, k Điểm M: Giao điểm của c, k Điểm N: Giao điểm của c, i Điểm N: Giao điểm của c, i Điểm N: Giao điểm của c, i Điểm F: Giao điểm của j, f Điểm F: Giao điểm của j, f Điểm F: Giao điểm của j, f Điểm E: Giao điểm của i, g Điểm E: Giao điểm của i, g Điểm E: Giao điểm của i, g Điểm D: Giao điểm của k, h Điểm D: Giao điểm của k, h Điểm D: Giao điểm của k, h Điểm H: Giao điểm của l, m Điểm H: Giao điểm của l, m Điểm H: Giao điểm của l, m

a. Tứ giác CEHD có \(\widehat{HEC}=\widehat{HDC}=90^o\Rightarrow\) nó là tứ giác nội tiếp.

b. Tứ giác BFEC có \(\widehat{BEC}=\widehat{BFC}=90^o\Rightarrow\)nó là tứ giác nội tiếp. Vậy 4 điểm B, C, E, F cùng thuộc một đường tròn.

c. Ta thấy \(\Delta HAE\sim\Delta CAD\left(g-g\right)\Rightarrow\frac{AH}{AC}=\frac{AE}{AD}\Rightarrow AE.AC=AH.AD\)

Ta thấy \(\Delta CBE\sim\Delta CAD\left(g-g\right)\Rightarrow\frac{BC}{AC}=\frac{BE}{AD}\Rightarrow AD.BC=BE.AC\)

d. Ta thấy ngay \(\widehat{PCB}=\widehat{BAM}\) (Cùng phụ với góc ABC)

Mà \(\widehat{BAM}=\widehat{BCM}\) (Góc nội tiếp cùng chắn cung BM)

Vậy nên \(\widehat{PCB}=\widehat{BCM}\) hay CM là phân giác góc \(\widehat{PCB}\)

Lại có \(CM⊥HD\) nên HCM là tam giác cân. Vậy CB là trung trực của HM hay H, M đối xứng nhau qua BC.

e. Ta thấy BFHD là tứ giác nội tiếp nên \(\widehat{FDH}=\widehat{FBH}\) (Góc nội tiếp cùng chẵn cung FH)

 DHEC cùng là tứ giác nội tiếp nên \(\widehat{HDE}=\widehat{HCE}\) (Góc nội tiếp cùng chẵn cung HE)

Mà \(\widehat{FBH}=\widehat{HCE}\) ( Cùng phụ với góc \(\widehat{BAC}\) )

nên \(\widehat{FDH}=\widehat{HDE}\) hay DH là phân giác góc FDE.

Tương tự FH, EH cũng là phân giác góc DFE và DEF.

Vậy tâm đường tròn nội tiếp tam giác DEF chính là H.

HD
28 tháng 3 2021

\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)

9 tháng 5 2021

giúp mình câu b với các bạn ơi

 

a: Xét tứ giác BEFC có \(\widehat{BEC}=\widehat{BFC}=90^0\)

nên BEFC là tứ giác nội tiếp đường tròn đường kính BC

=>B,E,F,C cùng thuộc một đường tròn

tâm I là trung điểm của BC

b: Xét ΔABC có

BF,CE là các đường cao

BF cắt CE tại H

Do đó: H là trực tâm của ΔABC

=>AH\(\perp\)BC

=>AM\(\perp\)BC

Xét (O) có

ΔAMD nội tiếp

AD là đường kính

Do đó: ΔAMD vuông tại M

=>AM\(\perp\)MD

Ta có: AM\(\perp\)BC

AM\(\perp\)MD

Do đó: BC//MD

Xét (O) có

\(\widehat{ABC}\) là góc nội tiếp chắn cung AC

\(\widehat{ADC}\) là góc nội tiếp chắn cung AC

Do đó: \(\widehat{ABC}=\widehat{ADC}\)

Xét (O) có

ΔACD nội tiếp

AD là đường kính

Do đó: ΔACD vuông tại C

Ta có: \(\widehat{BAH}+\widehat{ABC}=90^0\)(AH\(\perp\)BC)

\(\widehat{ADC}+\widehat{CAD}=90^0\)(ΔACD vuông tại C)

mà \(\widehat{ABC}=\widehat{ADC}\)

nên \(\widehat{BAH}=\widehat{CAD}\)

=>\(\widehat{BAH}+\widehat{MAD}=\widehat{CAD}+\widehat{MAD}\)

=>\(\widehat{BAD}=\widehat{CAM}\)(1)

Xét (O) có

\(\widehat{BAD}\) là góc nội tiếp chắn cung BD

\(\widehat{BCD}\) là góc nội tiếp chắn cung BD

Do đó: \(\widehat{BAD}=\widehat{BCD}\left(2\right)\)

Xét (O) có

\(\widehat{CBM}\) là góc nội tiếp chắn cung CM

\(\widehat{CAM}\) là góc nội tiếp chắn cung CM

Do đó: \(\widehat{CBM}=\widehat{CAM}\left(3\right)\)

Từ (1),(2),(3) suy ra \(\widehat{CBM}=\widehat{BCD}\)

Xét tứ giác BCDM có BC//DM

nên BCDM là hình thang

Hình thang BCDM có \(\widehat{CBM}=\widehat{BCD}\)

nên BCDM là hình thang cân

c: Xét (O) có

ΔABD nội tiếp

AD là đường kính

Do đó: ΔABD vuông tại B

=>BA\(\perp\)BD

mà CH\(\perp\)BA

nên CH//BD

Ta có: CD\(\perp\)CA

BH\(\perp\)AC

Do đó: BH//CD

Xét tứ giác BHCD có

BH//CD
BD//CH

Do đó: BHCD là hình bình hành

=>BC cắt HD tại trung điểm của mỗi đường

mà I là trung điểm của BC

nên I là trung điểm của HD

=>H,I,D thẳng hàng

d: Kẻ tiếp tuyến Ax của (O)

Xét (O) có

\(\widehat{xAC}\) là góc tạo bởi tiếp tuyến Ax và dây cung AC

\(\widehat{ABC}\) là góc nội tiếp chắn cung AC

Do đó: \(\widehat{xAC}=\widehat{ABC}\)

mà \(\widehat{ABC}=\widehat{AFE}\left(=180^0-\widehat{EFC}\right)\)

nên \(\widehat{xAC}=\widehat{AFE}\)

mà hai góc này là hai góc ở vị trí so le trong

nên EF//Ax

Ta có: Ax//EF

Ax\(\perp\)AD

Do đó: AD\(\perp\)EF tại K

13 tháng 3 2020

Đáp án:

Giải thích các bước giải:

1. Xét tứ giác CEHD có :

CEH = 90 ( BE là đường cao )

CDH = 90 ( AD là đường cao )

⇒ CEH + CDH = 90 + 90 = 180

Mà CEH và CDH là hai góc đối của tứ giác CEHD

⇒ CEHD là tứ giác nội tiếp (đpcm)

2. BE là đường cao ( gt )

⇒ BE ⊥ AB ⇒ BFC = 90

Như vậy E và F cùng nhìn BC dưới một góc 90 ⇒ E và F cùng nằm trên (O) đường kính AB

⇒ 4 điểm B, C, E, F cùng nằm trên một đường tròn (đpcm)

3. Xét ΔAEH và ΔADC có :

AEH = ADC (=90)

A chung

⇒ ΔAEH ~ ΔADC

⇒ AE/AD = AH/AC

⇒ AE.AC = AH.AD

Xét ΔBEC và ΔADC có :

BEC = ADC (=90)

C chung

⇒ ΔBEC ~ ΔADC

⇒ AE/AD = BC/AC

⇒ AD.BC = BE.AC (đpcm)

4. Có : C1 = A1 (cùng phụ góc ABC)

C2 = A1 ( hai góc nối tiếp chắn cung BM )

⇒ C1 = C2 ⇒ CB là tia phân giác HCM

Lại có : CB ⊥ HM

⇒ Δ CHM cân tại C

⇒ CB là đường trung trực của HM

⇒ H và M đối xứng nhau qua BC (đpcm)

5. Có : Bốn điểm B,C,E,F cùng nằm trên một đường tròn ( câu 2 )

⇒ C1 = E1 (hai góc nội tiếp cùng chắn BF) (*)

Có : Tứ giác CEHD nội tiếp (câu 1)

⇒ C1 = E2 (hai góc nội tiếp cùng chắn cung HD ) (**)

Từ (*) và (**) ta suy ra :

E1 = E2

⇒ EB là tia phân giác DEF

Cm tương tự ta được : FC là tia phân giác của DFE

Mà BE và CF cắt nhau tại H

⇒ H là tâm của đường tròn nội tiếp ΔDEF

13 tháng 6 2016
 
Ta có hình vẽ như sau:

Xét tứ giác CEHD ta có:

Góc CEH = 900 (Vì BE là đường cao)

Góc CDH = 900 (Vì AD là đường cao)

=> góc CEH + góc CDH = 1800

Mà góc CEH và góc CDH là hai góc đối của tứ giác CEHD. Do đó CEHD là tứ giác nội tiếp.