Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2}{3}-\frac{\frac{1}{4}}{15x}=-\frac{3}{5}\Leftrightarrow\frac{\frac{1}{4}}{15x}=\frac{2}{3}-\left(-\frac{3}{5}\right)\Leftrightarrow\frac{1}{4}=\frac{15x.19}{15}\Leftrightarrow x=\frac{1}{76}\)(ko rõ đề lắm nên làm bừa)
\(\frac{2}{3}-\frac{19}{15}.x=-\frac{3}{5}\)
\(-\frac{19}{15}.x=-\frac{3}{5}-\frac{2}{3}\)
\(-\frac{19}{15}.x=-\frac{19}{15}\)
\(\left(-\frac{19}{15}.x\right)\left(-15\right)=\left(-\frac{19}{15}\right)\left(-15\right)\)
\(19x=19\)
x = 1
a)\(\dfrac{1}{6}x+\dfrac{1}{10}x-\dfrac{4}{15}x+1=0\)
\(\left(\dfrac{1}{6}+\dfrac{1}{10}-\dfrac{4}{15}\right).x+1=0\)
\(\left(\dfrac{5}{30}+\dfrac{3}{30}-\dfrac{8}{30}\right).x+1=0\)
\(0.x+1=0\)
\(0.x=-1\)
=> Không có giá trị nào của x.
Vậy...
b)\(\left(\dfrac{1}{7}x-\dfrac{2}{7}\right).\left(-\dfrac{1}{5}x+\dfrac{3}{5}\right).\left(\dfrac{1}{3}x+\dfrac{4}{3}\right)=0\)
=> \(\dfrac{1}{7}x-\dfrac{2}{7}=0hoặc-\dfrac{1}{5}x+\dfrac{3}{5}=hoăc\dfrac{1}{3}x+\dfrac{4}{3}=0\)
+)\(~\dfrac{1}{7}x-\dfrac{2}{7}=0\) +) \(-\dfrac{1}{5}x+\dfrac{3}{5}=0\) +) \(\dfrac{1}{3}x+\dfrac{4}{3}=0\)
\(\dfrac{1}{7}x=-\dfrac{2}{7}\) \(-\dfrac{1}{5}x=-\dfrac{3}{5}\) \(\dfrac{1}{3}x=-\dfrac{4}{3}\)
\(x=2\) \(x=3\) \(x=-4\)
Vậy...
a 1/6x+1/10x-4/15x+1=0
(1/6+1/10-4/15)x+1=0
0x+1=0
0x=-1
x=-1/0
Vậy không có x (vì không có số nào chia cho 0)
Vì x=14 nên 15=x+1
\(A\left(x\right)=x^{15}-\left(x+1\right)x^{14}+\left(x+1\right)x^{13}-...+\left(x+1\right)x^3-\left(x+1\right)x^2+\left(x+1\right)x-15\)
\(A\left(x\right)=x^{15}-x^{15}-x^{14}+x^{14}-x^{13}+...+x^4+x^3-x^3+x^2+x^2+x-15\)
\(A\left(x\right)=x^2+x^2+x-15\)
\(\Leftrightarrow A\left(x\right)=14^2+14^2+14-15=196+196-1\)
\(A\left(x\right)=391\)
đề là s :)?
8/2