\(A=\dfrac{2024^{2024}+1}{2024^{2025}+1}\) và \(B=\dfrac{2024^{2023}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2024

lớp 6 còn ko bít giải

 

17 tháng 12 2024

So sánh hay tính tổng hiệu

 

-2024/2023<-1

-1<-2023/2024

=>-2024/2023<-2023/2024

25 tháng 2 2017

\(S=\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}-\sqrt{1}}+\frac{1}{\sqrt{3}-\sqrt{2}}+...+\frac{1}{\sqrt{2025}-\sqrt{2024}}\)

Ta nhận xét thấy mỗi số hạng trong S đều dương. Từ đó ta đặt

\(A=\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}-\sqrt{1}}+\frac{1}{\sqrt{3}-\sqrt{2}}+...+\frac{1}{\sqrt{2024}-\sqrt{2023}}\left(A>0\right)\)

\(\Rightarrow S=A+\frac{1}{\sqrt{2025}-\sqrt{2024}}=A+\frac{\sqrt{2025}+\sqrt{2024}}{\left(\sqrt{2025}-\sqrt{2024}\right)\left(\sqrt{2025}+\sqrt{2024}\right)}\)

\(=A+\sqrt{2025}+\sqrt{2024}>\sqrt{2025}=45\)

Vậy \(S>45\)

PS: Phan Thanh Tịnh xem lại bài giải nhé bạn

24 tháng 2 2017

Ta có : 1 = (n + 1) - n =\(\left(\sqrt{n+1}\right)^2-\left(\sqrt{n}\right)^2\)

\(=\left(\sqrt{n+1}\right)^2-\sqrt{n+1}.\sqrt{n}+\sqrt{n+1}.\sqrt{n}+\left(\sqrt{n}\right)^2\)

\(=\sqrt{n+1}.\left(\sqrt{n+1}-\sqrt{n}\right)+\sqrt{n}.\left(\sqrt{n+1}-\sqrt{n}\right)\)

\(=\left(\sqrt{n+1}-\sqrt{n}\right)\left(\sqrt{n-1}+\sqrt{n}\right)\)\

\(\Rightarrow\frac{1}{\sqrt{n+1}-\sqrt{n}}=\sqrt{n+1}+\sqrt{n}\)

Áp dụng vào bài toán,ta có :

\(S=\sqrt{1}+\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{2025}-\sqrt{2024}=\sqrt{2025}\)= 45

Vậy S = 45

18 tháng 6 2019

\(\frac{2015}{2016}< \frac{2016}{2016}=1=\frac{2034}{2034}< \frac{2035}{2034}\)

\(\Rightarrow\frac{2015}{2016}< \frac{2035}{2034}\)

\(\frac{-2025}{2024}< \frac{-2024}{2024}=-1< \frac{-2026}{2027}\)

\(\Rightarrow\frac{-2025}{2024}< \frac{-2026}{2027}\)

18 tháng 6 2019

#)Giải :

a) Ta có :

\(1-\frac{2015}{2016}=\frac{1}{2016}\)

\(1-\frac{2035}{2036}=\frac{1}{2036}\)

Vì \(\frac{1}{2016}>\frac{1}{2036}\Rightarrow\frac{2015}{2016}>\frac{2035}{2036}\)

b) Ta có : 

\(1+\frac{-2025}{2024}=\frac{-1}{2024}\)

\(1+-\frac{2026}{2027}=\frac{-1}{2027}\)

Vì \(\frac{-1}{2024}< \frac{-1}{2027}\Rightarrow\frac{-2025}{2024}< \frac{-2026}{2027}\)

29 tháng 4 2023

Với x = 2023 

<=> x + 1 = 2024

Khi đó P(2023) = x2023 - (x + 1).x2022 + ... + (x + 1).x - 1

= x2023 - x2023 - x2022 + .. + x2 + x - 1

= x - 1 = 2023 - 1 = 2022

4 tháng 7 2023

Trước hết ta phải chứng minh \(\dfrac{a}{b}< \dfrac{a+1}{b+1}\) (a, b ϵ N; a < b).

Thật vậy, \(\dfrac{a}{b}=\dfrac{a\left(b+1\right)}{b\left(b+1\right)}=\dfrac{a+ab}{b^2+b}\) và \(\dfrac{a+1}{b+1}=\dfrac{\left(a+1\right)b}{\left(b+1\right)b}=\dfrac{ab+b}{b^2+b}\).

Mà theo giả thuyết là a < b nên \(\dfrac{a+ab}{b^2+b}< \dfrac{ab+b}{b^2+b}\), suy ra \(\dfrac{a}{b}< \dfrac{a+1}{b+1}\) (a, b ϵ N; a < b).

Từ đây ta có:

\(B=\dfrac{2022^{2022}+1}{2022^{2023}+1}=\dfrac{2022^{2023}+2022}{2022^{2024}+2022}=\dfrac{2022^{2023}+2021+1}{2022^{2024}+2021+1}\)

Đặt \(A_1=\dfrac{2022^{2023}+2}{2022^{2024}+2}=\dfrac{2022^{2023}+1+1}{2022^{2024}+1+1}\), rõ ràng \(A_1>A\).

Đặt \(A_2=\dfrac{2022^{2023}+3}{2022^{2024}+3}=\dfrac{2022^{2023}+2+1}{2022^{2024}+2+1}\), rõ ràng \(A_2>A_1\).

...

Đặt \(A_{2020}=\dfrac{2022^{2023}+2021}{2022^{2024}+2021}=\dfrac{2022^{2023}+2020+1}{2022^{2024}+2020+1}\), rõ ràng \(A_{2020}>A_{2019}\) và \(B>A_{2020}\).

Suy ra \(B>A_{2020}>A_{2019}>...>A_2>A_1>A\). Vậy A < B.

4 tháng 7 2023

Ta có A = \(\dfrac{2022^{2023}}{2022^{2024}}=\dfrac{1}{2022}\) ; B = \(\dfrac{2022^{2022}}{2022^{2023}}=\dfrac{1}{2022}\)

Mà \(\dfrac{1}{2022}=\dfrac{1}{2022}\)

Vậy A = B

11 tháng 9 2023

Ta có :

\(\dfrac{10^{2023}}{10^{2024}}=\dfrac{10^{2022}}{10^{2023}}\)

mà \(\dfrac{10^{2023}}{10^{2024}}>\dfrac{10^{2023}-3}{10^{2024}-3}\)

     \(\dfrac{10^{2022}}{10^{2023}}< \dfrac{10^{2022}+1}{10^{2023}+1}\)

\(\Rightarrow\dfrac{10^{2023}-3}{10^{2024}-3}< \dfrac{10^{2022}+1}{10^{2023}+1}\)