Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (x-2)2 -(x-3)(x-3)=6
=>x2 -4x+4-x2+3=6
=>7-4x=6
=>4x=1 =>x=\(\frac{1}{4}\)
b)4(x-3)2 -(2x-1)(2x+1)=10
=>4(x2-6x+9)-4x2+1=10
=>4x2-24x+36-4x2+1=10
=>37-24x=10 =>24x=27 =>x=\(\frac{9}{8}\)
c)x2-16-3(x+4)=0
=>(x-4)(x+4)-3(x+4)=0
=>(x-7)(x+4)=0
=>\(\orbr{\begin{cases}x-7=0\\x+4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=7\\x=-4\end{cases}}}\)
=>x\(\in\left\{-4;7\right\}\)
d)(x-4)2-(x-2)(x+2)=6
=>x2-8x+16-x2+4=6
=>20-8x=6
=>8x=14 =>x=\(\frac{4}{7}\)
e) 9(x+1)2-(3x-2)(3x+2)=10
=>9(x2 +2x+1)-9x2+4=10
=>9x2+18x+9-9x2+4=10
=>18x+13=10
=>18x=-3
=>x=\(\frac{-1}{6}\)
mình chỉ làm bài 1 nha
nhớ chon mk đúng nha
a, \(3x+2\left(x-5\right)=6-\left(5x-1\right)\)
\(\Leftrightarrow3x+2x-10=6-5x+1\)
\(\Leftrightarrow-15\ne0\)Vậy phương trình vô nghiệm
b, \(x^3-3x^2-x+3=0\)
\(\Leftrightarrow x\left(x^2-1\right)-3\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-1\right)\left(x+1\right)=0\Leftrightarrow x=3;\pm1\)
Vậy tập nghiệm của phương trình là S = { 1 ; -1 ; 3 }
c, \(\frac{1}{x-3}+\frac{x}{x+3}=\frac{2}{x^2-9}ĐK:x\ne\pm3\)
\(\Leftrightarrow\frac{x+3}{\left(x-3\right)\left(x+3\right)}+\frac{x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{2}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow x+3+x^2-3x-2=0\)
\(\Leftrightarrow x^2-2x+1=0\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x=1\)thỏa mãn
Vậy ...
<>?/[;b[]rwel;u];53pjkjnlgkljtreylkeuro;uwqr[i5uiwehhwwejokejoiyufljukneghnmknbfvhdbg.elkgiwr;iewqirluoyeiwhtgo
a) \(3x^2-2x=0\)
Phương trình này xác định với mọi x
b)\(\frac{1}{x-1}=3\)
pt xác định \(\Leftrightarrow x-1\ne0\Leftrightarrow x\ne1\)
c) \(\frac{2}{x-1}=\frac{x}{2x-4}\)
pt xác định\(\Leftrightarrow\hept{\begin{cases}x-1\ne0\\2x-4\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne1\\x\ne2\end{cases}}\)
d) \(\frac{2x}{x^2-9}=\frac{1}{x+3}\)
pt xác định\(\Leftrightarrow\hept{\begin{cases}x^2-9\ne0\\x+3\ne0\end{cases}}\Leftrightarrow x\ne\pm3\)
e) \(2x=\frac{1}{x^2-2x+1}\)
pt xác định\(\Leftrightarrow x^2-2x+1\ne0\Leftrightarrow\left(x-1\right)^2\ne0\)
\(\Leftrightarrow x-1\ne0\Leftrightarrow x\ne1\)
f) \(\frac{1}{x-2}=\frac{2x}{x^2-5x+6}\)
\(\Leftrightarrow\frac{1}{x-2}=\frac{2x}{\left(x-3\right)\left(x-2\right)}\)
pt xác định\(\Leftrightarrow\hept{\begin{cases}x-2\ne0\\\left(x-2\right)\left(x-3\right)\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne2\\x\ne3\end{cases}}\)
A)\(x\left(x-1\right)+6\left(x-3\right)\left(x+3\right)\)
\(=x^2-x+6\left(x^2-9\right)\)
\(=x^2-x+6x^2-54\)
\(=7x^2-x-54\)
F.\(\left(2-x\right)\left(2+x\right)-2x\left(x-7\right)+x\left(x+1\right)\)
\(=4-x^2-2x^2+14x+x^2+x\)
\(=-2x^2+15x+4\)
a) (x + 6)(3x + 1) + x2 - 36 = 0
<=> 3x2 + x + 18x + 6 + x2 - 36 = 0
<=> 4x2 + 19x - 30 = 0
<=> 4x2 + 24x - 5x - 30 = 0
<=> 4x(x + 6) - 5(x + 6) = 0
<=> (x + 6)(4x - 5) = 0
<=> x + 6 = 0 hoặc 4x - 5 = 0
<=> x = -6 hoặc x = 5/4
Bài 1 mình đã làm xong rồi, anh em nào giúp mình bài 2 với!
a)x7+x5+1=x7+x6-x6+2x5-x5+x4-x4+x3-x3+x2-x2+1
=x7-x6+x5-x3+x2+x6-x5+x4-x2+x+x5-x4+x3-x+1
=x2(x5-x4+x3-x+1)+x(x5-x4+x3-x+1)+1(x5-x4+x3-x+1)
=(x2+x+1)(x5-x4+x3-x+1)
b)4x4-32x2+1=4x4+12x3+2x2-12x3-36x2-6x+2x2+6x+1
=2x2(2x2+6x+1)-6x(2x2+6x+1)+1(2x2+6x+1)
=(2x2-6x+1)(2x2+6x+1)
c)x6+27=(x2+3)(x2-3x+3)(x2+3x+3)
d)3(x4+x2+1)-(x2+x+1)
=3x4-3x3+2x2+3x3-3x2+2x+3x2-3x+2
=x2(3x2-3x+2)+x(3x2-3x+2)+1(3x2-3x+2)
=(x2+x+1)(3x2-3x+2)
e)bạn tự làm nhé
Ta có: \(E=\left(-x-2\right)^3+2\left(x-2\right)\left(x^2+2x+4\right)-x^2\left(x-6\right)\)
\(=-x^3-6x^2-12x-8-x^3+6x^2+2\left(x^3-8\right)\)
\(=-2x^3-12x-8+2x^3-16=-12x-24\)
=-12(x+2)
Khi x=2 thì \(E=-12\left(2+2\right)=-12\cdot4=-48\)
?