K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2016

bn ơi K thuộc SD hả ? ... nếu vậy thì MK sẽ không thể song song với mặt phẳng ( SBC) đâu nhé :) 

 

16 tháng 8 2016

thuộc ban nhé. có lẽ mình ghi sai

 

NV
4 tháng 9

a.

Ta có: \(\begin{cases}S\in\left(SAB\right)\cap\left(SCD\right)\\ AB\Vert CD\\ AB\subset\left(SAB\right);CD\subset\left(SCD\right)\end{cases}\)

\(\Rightarrow\left(SAB\right)\cap\left(SCD\right)=Sx\Vert AB\Vert CD\)

b.

Gọi O là giao điểm AC và BD =>O là trung điểm AC và BD

\(O\in AC\subset\left(IAC\right)\Rightarrow IO\subset\left(IAC\right)\)

O là trung điểm BD, I là trung điểm SD =>OI là đường trung bình tam giác SBD

=>OI song song SB

Ta có: \(\begin{cases}C\in\left(IAC\right)\cap\left(SBC\right)\\ OI\Vert SB\\ OI\subset\left(IAC\right);SB\subset\left(SBC\right)\end{cases}\) \(\Rightarrow\left(IAC\right)\cap\left(SBC\right)=Cx\Vert SB\)

4 tháng 9

Đề bài:

Cho hình chóp \(S . A B C D\) có đáy là hình bình hành.

  1. Tìm giao tuyến của mặt phẳng \(\left(\right. S A B \left.\right)\) và mặt phẳng \(\left(\right. S C D \left.\right)\).
  2. Gọi \(I\) là trung điểm của \(S D\). Mặt phẳng \(\left(\right. I A C \left.\right)\) và mặt phẳng \(\left(\right. S B C \left.\right)\) cắt nhau theo giao tuyến \(C x\). Chứng minh rằng \(C x \parallel S B\).

Phần a) Tìm giao tuyến của mặt phẳng \(\left(\right. S A B \left.\right)\) và mặt phẳng \(\left(\right. S C D \left.\right)\):

1. Mô tả các mặt phẳng:

  • Mặt phẳng \(\left(\right. S A B \left.\right)\) là mặt phẳng chứa các điểm \(S\)\(A\), và \(B\).
  • Mặt phẳng \(\left(\right. S C D \left.\right)\) là mặt phẳng chứa các điểm \(S\)\(C\), và \(D\).

2. Tính giao tuyến của hai mặt phẳng:

Hai mặt phẳng này có giao tuyến là một đường thẳng, và để tìm giao tuyến này, ta cần tìm một điểm chung của hai mặt phẳng và một hướng của đường thẳng giao tuyến.

  • Mặt phẳng \(\left(\right. S A B \left.\right)\) chứa các điểm \(S\)\(A\), và \(B\).
  • Mặt phẳng \(\left(\right. S C D \left.\right)\) chứa các điểm \(S\)\(C\), và \(D\).

Lưu ý rằng điểm \(S\) là chung của cả hai mặt phẳng. Giao tuyến của hai mặt phẳng này sẽ là đường thẳng đi qua điểm \(S\)và vuông góc với các cạnh của đáy \(A B C D\) tại các điểm \(A\)\(B\)\(C\), và \(D\).

Do đáy \(A B C D\) là hình bình hành, các cạnh đối diện của hình bình hành sẽ song song. Do đó, giao tuyến của hai mặt phẳng \(\left(\right. S A B \left.\right)\) và \(\left(\right. S C D \left.\right)\) chính là đoạn thẳng nối giữa hai điểm \(B\) và \(C\) trong không gian.

Kết luận: Giao tuyến của hai mặt phẳng \(\left(\right. S A B \left.\right)\) và \(\left(\right. S C D \left.\right)\) là đoạn thẳng \(B C\).


Phần b) Chứng minh \(C x \parallel S B\):

1. Mô tả các mặt phẳng:

  • \(I\) là trung điểm của đoạn \(S D\), nghĩa là \(I\) chia đoạn \(S D\) thành hai phần bằng nhau.
  • Mặt phẳng \(\left(\right. I A C \left.\right)\) chứa các điểm \(I\)\(A\), và \(C\).
  • Mặt phẳng \(\left(\right. S B C \left.\right)\) chứa các điểm \(S\)\(B\), và \(C\).

Cả hai mặt phẳng này giao nhau tại đường thẳng \(C x\), và chúng ta cần chứng minh rằng đường thẳng \(C x\) song song với \(S B\).

2. Tính chất của các mặt phẳng:

  • Mặt phẳng \(\left(\right. I A C \left.\right)\) và mặt phẳng \(\left(\right. S B C \left.\right)\) cắt nhau theo đường thẳng \(C x\).
  • Do \(I\) là trung điểm của \(S D\), ta có \(S I = I D\). Vì vậy, \(I\) chia đoạn \(S D\) thành hai phần bằng nhau.
  • Mặt phẳng \(\left(\right. I A C \left.\right)\) đi qua \(I\)\(A\), và \(C\), còn mặt phẳng \(\left(\right. S B C \left.\right)\) đi qua \(S\)\(B\), và \(C\).

3. Chứng minh tính song song:

  • Ta có thể áp dụng các tính chất về đường thẳng và mặt phẳng song song trong không gian.
  • Vì \(I\) là trung điểm của \(S D\), và \(C x\) là giao tuyến của hai mặt phẳng \(\left(\right. I A C \left.\right)\) và \(\left(\right. S B C \left.\right)\), ta nhận thấy rằng đường thẳng \(C x\) phải song song với đường thẳng \(S B\) do tính chất của các mặt phẳng giao nhau tại điểm \(C x\).

Cụ thể, vì hai mặt phẳng \(\left(\right. I A C \left.\right)\) và \(\left(\right. S B C \left.\right)\) có một điểm chung là \(C\) và đường thẳng \(C x\) là giao tuyến của chúng, mà mặt phẳng \(\left(\right. S B C \left.\right)\) chứa \(S B\), do đó \(C x\) sẽ song song với \(S B\).

Kết luận: Đường thẳng \(C x\) song song với \(S B\), tức là \(C x \parallel S B\).


Tóm lại:

  1. Giao tuyến của mặt phẳng \(\left(\right. S A B \left.\right)\) và mặt phẳng \(\left(\right. S C D \left.\right)\) là đoạn thẳng \(B C\).
  2. Đường thẳng giao tuyến \(C x\) của hai mặt phẳng \(\left(\right. I A C \left.\right)\) và \(\left(\right. S B C \left.\right)\) song song với \(S B\), tức là \(C x \parallel S B\).
4 tháng 5 2021

câu 1:

\(y'=\left(\frac{x^3}{3}+\frac{x^2}{2}-5x-1\right)'\)

\(=\left(\frac{1}{3}x^3\right)'+\left(\frac{1}{2}x^2\right)'-\left(5x\right)'-1'\)

\(=\frac{3}{3}x^2+\frac{2}{2}x-5-0=x^2+x-5\)

12 tháng 8

Mình sẽ tóm tắt và giải từng ý nhé.

Đề cho: Hình chóp S.ABCD, đáy ABCD là tứ giác.
M nằm trong tam giác SBC, N nằm trong tam giác SCD.

a) Giao tuyến của (AMN) và (ABCD)

  • A thuộc (AMN) và A cũng thuộc đáy (ABCD).
  • M thuộc (AMN) nhưng M thuộc cạnh SB nên không nằm trên đáy.
  • N thuộc (AMN) nhưng N thuộc cạnh SD cũng không nằm trên đáy.
    → Để tìm giao tuyến, ta cần 2 điểm chung. Điểm A có rồi, điểm thứ hai là giao điểm của MN với đáy (ABCD) nếu có.
    Nhưng MN nối M (SB) và N (SD), cả hai không thuộc đáy, nên để tìm điểm đó ta phải xét: SB và SD giao đáy tại B và D, nối BD cắt MN tại một điểm I. I thuộc đáy, I thuộc MN, nên I ∈ (AMN) ∩ (ABCD).
    → Giao tuyến chính là AI.

b) Giao điểm của MN với (SAC)

  • M thuộc SB, N thuộc SD, mặt phẳng (SAC) chứa S, A, C.
  • SB và SD đều nằm trong (SBD), không phải (SAC), nhưng đường MN có thể cắt (SAC) tại điểm P. Để tìm P, ta tìm giao điểm của MN với đường SC (vì SC nằm trong cả (SAC) và chứa điểm từ M→N theo hướng hợp lý).

c) Giao điểm của SC với (AMN)

  • SC nằm trong (SAC).
  • Mặt phẳng (AMN) chứa A, M, N. Để tìm giao điểm Q, ta xét SC cắt MN hoặc cắt một đường trong (AMN). Trong trường hợp này SC và MN có thể cắt nhau tại chính điểm P đã tìm ở câu b).

Tóm lại:
a) AI (I là MN ∩ BD)
b) P = MN ∩ (SAC) (thường là trên SC)
c) Cùng điểm P đó

Nếu bạn muốn mình vẽ hình minh họa để nhìn rõ hơn mình có thể làm ngay.

Cho mình xin 1 tick với ạ

Câu 1. Cho tứ diện ABCD, G là trọng tâm tam giác ABD. Trên đoạn BC lấy điểm M sao cho M=2MC. Tìm giao tuyến của 2 mặt phẳng (BCD) và (ACG) Câu 2. Cho tứ diện đều ABCD có các cạnh bằng a. Gọi M, N, P lần lượt là trung điểm của AB, AD và CD. a) Chứng minh MN song song với (BCD) b) Xác định thiết diện của hình chóp cắt bởi (MNP) và tính diện tích thiết diện Câu 3. Cho hình chóp S.ABCD có đáy ABCD là...
Đọc tiếp

Câu 1. Cho tứ diện ABCD, G là trọng tâm tam giác ABD. Trên đoạn BC lấy điểm M sao cho M=2MC. Tìm giao tuyến của 2 mặt phẳng (BCD) và (ACG)

Câu 2. Cho tứ diện đều ABCD có các cạnh bằng a. Gọi M, N, P lần lượt là trung điểm của AB, AD và CD.
a) Chứng minh MN song song với (BCD)
b) Xác định thiết diện của hình chóp cắt bởi (MNP) và tính diện tích thiết diện

Câu 3. Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N lần lượt là trung điểm của AB và SD
a) Tìm giao tuyến của các cặp mặt phẳng (SAD) và (SBD); (SAC) và (ABCD); (SAC) và (SDM)
b) Tìm giao tuyến của BD và mp (SAC); SA và mp (CMN)

Câu 4. Cho hình chóp S.ABCD có đáy ABCD là hình thang, đáy lớn AB. Gọi M là điểm bất kì thuộc đoạn thẳng SD. Tìm giao tuyến của các mặt phẳng:
a) d1 = (SAB) giao (SCD)
b) d2 = (SCD) giao (MAB). Từ đó chứng minh d1 song song d2

0
30 tháng 11 2017

§3. Đường thẳng và mặt phẳng song song
a) Theo tính chất đường trung bình của tam giác ta suy ra MO // SD mà MO không thuộc mp(SCD).
Nên MO // mp(SCD).
b) mp(MON) chính là mp(SBD). Giao tuyến của (SBD) với (SAC) là SO. Gọi giao điểm của SO với MN là P - điểm cần tìm.
c) Có vẻ đề bị sai.
d) Thiết diện là tam giác SBD.