Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1 , ( x - 3 ) . ( 4 - x ) = 01 , ( x - 3 ) . ( 4 - x ) = 0
⇒\orbr{x−3=04−x=0⇒\orbr{x−3=04−x=0
⇒\orbr{x=3∈Zx=4∈Z⇒\orbr{x=3∈Zx=4∈Z
vậy______
2,(x−5)(x2+1)=02,(x−5)(x2+1)=0
⇒\orbr{x−5=0x2+1=0⇒\orbr{x−5=0x2+1=0
⇒\orbr{x=5∈Zx∈∅⇒\orbr{x=5∈Zx∈∅
vậy x = 5
3, ( x + 1 ) + ( x + 2 ) + (x + 3 ) + ... +( x + 99 ) = 0
(x+x+x+....+x)+(1+2+3+.....+99) = 0
(x.99) + 5050 = 0
x.99 = 0-5050
x.99 = -5050
x = -5050 : 99
x = −505099∉Z⇒x∈∅−505099∉Z⇒x∈∅
vậy_____
Đặt \(A=\sqrt{a^2-1}+\sqrt{b^2+ab+3}\)
Điều kiện \(a,b\inℤ\); \(\orbr{\begin{cases}a\ge1\\a\le-1\end{cases}}\)và \(b^2+ab+3\ge0\)
Để A là số nguyên thì \(a^2-1\)và \(b^2+ab+3\)đều phải là các số chính phương.
Đặt \(\hept{\begin{cases}a^2-1=k^2\left(k\inℤ\right)\\b^2+ab+3=n^2\left(n\inℤ\right)\end{cases}}\)
Ta có: \(a^2-1=k^2\Leftrightarrow a^2-k^2=1\Leftrightarrow\left(a-k\right)\left(a+k\right)=1\)
Ta lập bảng sau:
\(a-k\) | 1 | -1 |
\(a+k\) | 1 | -1 |
\(a\) | 1 (nhận) | -1 (nhận) |
\(k\) | 0 | 0 |
Vậy \(a=\pm1\)
Khi \(a=1\)thì \(b^2+ab+3=b^2+b+3=n^2\)
\(\Leftrightarrow4b^2+4b+12=4n^2\Leftrightarrow4b^2+4b+1-4n^2=-11\Leftrightarrow\left(2b+1\right)^2-\left(2n\right)^2=-11\)
\(\Leftrightarrow\left(2b+1-2n\right)\left(2b+1+2n\right)=-11\)
Ta lại lập bảng giá trị:
2b+1-2n | -1 | 11 | 1 | -11 |
2b+1+2n | 11 | -1 | -11 | 1 |
b | 2 (nhận) | 2 (nhận) | -3 (nhận) | -3 (nhận) |
n | 3 (nhận) | -3 (nhận) | -3 (nhận) | 3 (nhận) |
Vậy \(\orbr{\begin{cases}b=2\\b=-3\end{cases}}\)
Như vậy ta tìm được hai bộ số (a;b) là (1;2) và (1;-3)
Khi \(a=-1\)thì \(b^2+ab+3=b^2-b+3=n^2\)\(\Leftrightarrow4b^2-4b+12=4n^2\Leftrightarrow4b^2-4b+1-4n^2=-11\Leftrightarrow\left(2b-1\right)^2-\left(2n\right)^2=-11\)
\(\Leftrightarrow\left(2b-1-2n\right)\left(2b-1+2n\right)=-11\)
Ta lại lập một bảng giá trị tiếp theo:
2b-1-2n | -1 | 11 | 1 | -11 |
2b-1+2n | 11 | -1 | -11 | 1 |
b | 3 (nhận) | 3 (nhận) | -2 (nhận) | -2 (nhận) |
n | 3 (nhận) | -3 (nhận) | -3 (nhận) | 3 (nhận) |
Vậy \(\orbr{\begin{cases}b=3\\b=-2\end{cases}}\)
Vậy ta tìm được hai bộ số (a;b) là (-1;-2) và (-1;3)
Như vậy các bộ số (a;b) thỏa mãn \(\sqrt{a^2-1}+\sqrt{b^2+ab+3}\)là số nguyên là: (1;2); (1;-3); (-1;-2) và (-1;3)
a) \(x+y+z+5=2\sqrt{x-1}+4\sqrt{y-3}+6\sqrt{z-5}\left(DK:x\ge1;y\ge3;z\ge5\right)\)
\(\Leftrightarrow\left[\left(x-1\right)-2\sqrt{x-1}+1\right]+\left[\left(y-3\right)-4\sqrt{y-3}+4\right]+\left[\left(z-5\right)-6\sqrt{z-5}+9\right]=0\)
\(\Leftrightarrow\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{y-3}-2\right)^2+\left(\sqrt{z-5}-3\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}\left(\sqrt{x-1}-1\right)^2=0\\\left(\sqrt{y-3}-2\right)^2=0\\\left(\sqrt{z-5}-3\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=7\\z=14\end{cases}}}\)(TMDK)
ta có \(a^3+a^3+1\ge3a^2.\)mấy cái khác tt bạn cộng vế theo vế là ra GTNN
Do\(1\le a\le b\le c\le d\le4\)
\(\Rightarrow M=\frac{a}{b}+\frac{c}{d}\ge\frac{1}{b}+\frac{b}{4}\ge2\sqrt{\frac{1}{b}.\frac{b}{4}}=1\) (AM-GM)
Dấu "=" xảy ra \(\Leftrightarrow a=1;b=c=\frac{1}{2};d=4\)
a) 9x2 - 36
=(3x)2-62
=(3x-6)(3x+6)
=4(x-3)(x+3)
b) 2x3y-4x2y2+2xy3
=2xy(x2-2xy+y2)
=2xy(x-y)2
c) ab - b2-a+b
=ab-a-b2+b
=(ab-a)-(b2-b)
=a(b-1)-b(b-1)
=(b-1)(a-b)
P/s đùng để ý đến câu trả lời của mình
Gọi 3 số đó là \(a,b,c\inℕ^∗\)
Khi đó \(ƯCLN\left(a,b\right)=ƯCLN\left(b,c\right)=ƯCLN\left(c,a\right)=1\)
và \(a+b⋮c,b+c⋮a,c+a⋮b\)
\(\Rightarrow\left\{{}\begin{matrix}b+c=ax\left(1\right)\\c+a=by\left(2\right)\\a+b=cz\left(3\right)\end{matrix}\right.\left(x,y,z\inℕ^∗\right)\)
Lấy \(\left(2\right)-\left(1\right)\), ta được \(a-b=by-ax\)
\(\Rightarrow a\left(x+1\right)=b\left(y+1\right)\) (4)
\(\Rightarrow a\left(x+1\right)⋮b\) mà \(ƯCLN\left(a,b\right)=1\Rightarrow x+1⋮b\) \(\Rightarrow x+1=bm\)
Tương tự, ta có \(y+1⋮a\) \(\Rightarrow y+1=an\)
\(\left(4\right)\Rightarrow abm=ban\) \(\Rightarrow m=n\)
\(\Rightarrow\left\{{}\begin{matrix}x+1=bm\\y+1=am\end{matrix}\right.\)
Tương tự, ta cũng có \(z+1=cm\)
Khi đó \(m\left(a+b\right)=x+y+2\)
Mà \(cz=a+b\) \(\Rightarrow mcz=x+y+2\)
\(\Rightarrow z\left(z+1\right)=x+y+2\)
\(\Rightarrow z^2+z=x+y+2\)
Hoàn toàn tương tự, ta cũng có
\(\left\{{}\begin{matrix}x^2+x=y+z+2\left(5\right)\\y^2+y=z+x+2\left(6\right)\\z^2+z=x+y+2\left(7\right)\end{matrix}\right.\)
\(\Rightarrow x^2+y^2+z^2=x+y+z+6\)
\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\left(y-\dfrac{1}{2}\right)^2+\left(z-\dfrac{1}{2}\right)^2=\dfrac{27}{4}\)
\(\Rightarrow\left(2x-1\right)^2+\left(2y-1\right)^2+\left(2z-1\right)^2=27\)
Ta lập tất cả các bộ 3 số chính phương có tổng bằng 27:
(1,1,5); (1,5,1); (5,1,1); (3,3,3)
Nếu \(2x-1=2y-1=2z-1=3\Leftrightarrow x=y=z=2\)
\(\Rightarrow\left\{{}\begin{matrix}b+c=2x\\c+a=2y\\a+b=2z\end{matrix}\right.\) \(\Rightarrow a=b=c\) \(\Rightarrow a=b=c=1\) (vì \(ƯCLN\left(a,b\right)=1\))
Nếu có 1 trong 3 số 2x-1, 2y-1, 2z-1 bằng 5 còn 2 số kia bằng 1 thì không mất tính tổng quát, giả sử \(2x-1=5,2y-1=1,2z-1=1\)
\(\Rightarrow x=3,y=z=1\)
\(\Rightarrow\left\{{}\begin{matrix}b+c=3a\\c+a=b\\a+b=c\end{matrix}\right.\) \(\Rightarrow a=b=c=0\), loại
Vậy \(a=b=c=1\) là bộ (a, b, c) duy nhất thỏa mãn ycbt.