Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
A B C M D E
a)
Xét tam giác AMB có: MD là pg góc AMB
=> \(\frac{AD}{BD}=\frac{AM}{BM}\) ( 1 )
Xét tam giác AMC có: MD là pg góc AMC
=> \(\frac{AE}{CE}=\frac{AM}{CM}\)
Mà BM = CM
=> \(\frac{AE}{CE}=\frac{AM}{BM}\) ( 2 )
* Từ ( 1 ) , ( 2 ) => \(\frac{AD}{BD}=\frac{AE}{CE}\)
=> DE // BC. ( định lí Ta-lét đảo )
Vậy DE // BC.
b)
Ta có: BM = CM = \(\frac{1}{2}\)BC = \(\frac{1}{2}\)x 6 = 3 (cm)
Ta có: \(\frac{AD}{BD}=\frac{AM}{BM}\)
=> \(\frac{AD}{AM}=\frac{BD}{BM}=\frac{AD+BD}{AM+BM}=\frac{AB}{AM+BM}\)
=> \(\frac{AD}{5}=\frac{AB}{5+3}=\frac{AB}{8}\)
=> \(\frac{AD}{AB}=\frac{5}{8}\)
Xét tam giác ABC có: DE // BC
=> \(\frac{DE}{BC}=\frac{AD}{AB}\) ( hệ quả định lí Ta-lét )
=> \(\frac{DE}{6}=\frac{5}{8}\)
=> DE = 3,75 ( cm ).
Vậy DE = 3,75 cm.
![](https://rs.olm.vn/images/avt/0.png?1311)
Xét 2 tam giác ABC và HBA, ta có
A= H= 900
B chung
=> tam giác ABCđồng dạng với tam giác HBA
b) Áp dụng định lí pi ta go, ta có
BC2 = AB2+AC2
BC2= 212 +282=1225
=> BC=35
... CM tương tự để ra AM và AH
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 26 : Bài giải
a. Do AB⊥AC,HE⊥AB,HF⊥ACAB⊥AC,HE⊥AB,HF⊥AC
⇒ˆEAF=ˆAEH=ˆAFH=90o⇒EAF^=AEH^=AFH^=90o
→◊AEHF→◊AEHF là hình chữ nhật
→AH=EF
Mấy câu khác chưa học !
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 2:
a: Xét ΔABC có
N là trung điểm của BC
M là trung điểm của AB
Do đó: NM là đường trung bình
=>NM//AC
hay NM//EF
Ta có: ME⊥AC
NF⊥AC
Do đó: ME//NF
Xét tứ giác MEFN có
ME//FN
MN//FE
Do đó: MEFN là hình bình hành
Suy ra: ME=NF
b: Ta có: MEFN là hình bình hành
nên MN=EF
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(BM=\dfrac{1}{2}BC=\dfrac{1}{2}.10=5\left(cm\right)\)
Tam giác ABM có MD là p/giác
\(\Rightarrow\dfrac{AD}{BD}=\dfrac{AM}{BM}=\dfrac{6}{5}\)
b) Tam giác AMC có ME là p/giác
\(\Rightarrow\dfrac{MC}{AM}=\dfrac{EC}{AE}\)
Mà: MC = BM (GT)
\(\Rightarrow\dfrac{BM}{AM}=\dfrac{EC}{AE}\)
c) Có: \(\dfrac{AD}{BD}=\dfrac{AM}{BM}\left(cmt\right)\) (1)
Tam giác AMC có ME là p/giác
\(\Rightarrow\dfrac{AE}{EC}=\dfrac{AM}{MC}\)
Mà: BM = MC (GT)
\(\Rightarrow\dfrac{AE}{EC}=\dfrac{AM}{BM}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\dfrac{AD}{BD}=\dfrac{AE}{EC}\)
=> DE // BC
a) Ta có: M là trung điểm của BC(gt)
nên \(MB=\dfrac{BC}{2}=\dfrac{10}{2}=5\left(cm\right)\)
Xét ΔAMB có MD là đường phân giác ứng với cạnh AB(Gt)
nên \(\dfrac{AD}{BD}=\dfrac{AM}{BM}\)(Tính chất đường phân giác của tam giác)
hay \(\dfrac{AD}{BD}=\dfrac{6}{5}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có AB vuông góc với AC, MF vuông góc với AC suy ra MF song song với AB, xét tam giácBca có m là trung điểm của BC, MF song song với AB suy ra ra f là trung điểm của AC mà f là trung điểm của mn suy ra m n cắt AC tại f suy ra tứ giác mcna là hình bình hành
A B C M E F I K
a/
Xét tg ABM
\(\dfrac{AE}{AM}=\dfrac{BE}{MB}\) (Trong một tam giác, đường phân giác của một góc chia cạnh đối diện thành hai đoạn thẳng tỉ lệ với hai cạnh kề với hai đoạn ấy)
\(\Rightarrow BE=\dfrac{AE.MB}{AM}=\dfrac{5.4}{6}=\dfrac{20}{6}cm\)
\(\Rightarrow AB=AE+BE=5+\dfrac{20}{6}\)
b/
Ta có
\(\dfrac{AE}{AM}=\dfrac{BE}{MB}\left(cmt\right)\Rightarrow\dfrac{AE}{BE}=\dfrac{AM}{MB}\)
Xét tg AMC có
\(\dfrac{AF}{AM}=\dfrac{CF}{MC}\) (T/c đường phân giác)
\(\Rightarrow\dfrac{AF}{CF}=\dfrac{AM}{MC}\)
Mà \(MB=MC\left(gt\right)\Rightarrow\dfrac{AM}{MB}=\dfrac{AM}{MC}\)
\(\Rightarrow\dfrac{AE}{BE}=\dfrac{AF}{CF}\) => EF//BC (Talet đảo trong tg)
c/
EF//BC => EF//IK
\(EI\perp BC\left(gt\right);FK\perp BC\left(gt\right)\) => EI//FK
=> EFKI là hbh (Tứ giác có 2 cặp cạnh đối // với nhau từng đôi một là hbh)
Mà \(EI\perp BC\left(gt\right)\Rightarrow\widehat{EIK}=90^o\)
=> EFKI là hình CN => EK = IF (trong HCN 2 đường chéo = nhau)