K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2024

\(C=\left(x-3y\right)^2-\left(x-2y\right)\left(x+3y\right)\)

\(=x^2-6xy+9y^2-\left(x^2+3xy-2xy-6y^2\right)\)

\(=x^2-6xy+9y^2-x^2-xy+6y^2=-7xy+15y^2\)

Khi x=2;y=-1 thì \(C=-7\cdot2\cdot\left(-1\right)+15\cdot\left(-1\right)^2=14+15=29\)

\(A=\left(2-x\right)\left(2+x\right)-\left(x+3\right)^2\)

\(=4-x^2-x^2-6x-9=-2x^2-6x-5\)

Khi x=5 thì \(A=-2\cdot5^2-6\cdot5-5\)

=-50-5-30

=-85

\(B=\left(2x+5\right)^2-4\left(x-3\right)\left(x+3\right)\)

\(=4x^2+20x+25-4\left(x^2-9\right)\)

\(=4x^2+20x+25-4x^2+36=20x+61\)

Khi x=1/10 thì \(B=20\cdot\dfrac{1}{10}+61=2+61=63\)

11 tháng 12 2024

1

1 tháng 8 2018

Bài 1:

a) \(8\left(x-2\right)-2\left(3x-4\right)=2\)

\(\Rightarrow2\left[4\left(x-2\right)-\left(3x-4\right)\right]=2\)

\(\Rightarrow4\left(x-2\right)-3x+4=0\)

\(\Rightarrow4x-8-3x+4=0\)

\(\Rightarrow x-4=0\)

\(\Rightarrow x=4\)

b) \(10\left(3x-2\right)-3\left(5x+2\right)+5\left(11-4x\right)=25\)

\(\Rightarrow5\left[2\left(3x-2\right)+11-4x\right]-3\left(5x+2\right)=25\)

\(\Rightarrow5\left(6x-4+11-4x\right)-3\left(5x+2\right)=25\)

\(\Rightarrow5\left(2x+7\right)-3\left(5x+2\right)=25\)

\(\Rightarrow10x+35-15x-6=25\)

\(\Rightarrow-5x+29=25\)

\(\Rightarrow-5x=25-29\)

\(\Rightarrow-5x=-4\)

\(\Rightarrow x=\dfrac{4}{5}\)

c) \(2x\left(x+1\right)-x^2\left(x+2\right)+x^3-x+4=0\)

\(\Rightarrow2x^2+2x-x^3-2x^2+x^3-x+4=0\)

\(\Rightarrow x+4=0\)

\(\Rightarrow x=-4\)

d) \(4x\left(3x+2\right)-6x\left(2x+5\right)+21\left(x-1\right)=0\)

\(\Rightarrow12x^2+8x-12x^2-30x+21x-21=0\)

\(\Rightarrow-x-21=0\)

\(\Rightarrow x=-21\)

Bài 2:

a) \(P=\left(4x^2-3y\right)2y-\left(3x^2-4y\right)3y\)

\(P=8x^2y-6y^2-9x^2y+12y^2\)

\(P=-x^2y+6y^2\)

Thay x = -1 ; y = 2 vào P ta được

\(P=-\left(-1\right)^2.2+6.2^2\)

\(P=-2+24=22\)

b) \(Q=4x^2\left(5x-3y\right)-x^2\left(4x+y\right)\)

\(Q=20x^3-12x^2y-4x^3-x^2y\)

\(Q=16x^3-13x^2y\)

Thay x = -1 ; y = 2 vào Q ta được

\(Q=16\left(-1\right)^3-13\left(-1\right)^2.2\)

\(Q=-16-26\)

\(Q=-42\)

c) \(H=x\left(x^3-y\right)+x^2\left(y-x^2\right)-y\left(x^2-3x\right)\)

\(H=x^4-xy+x^2y-x^4-x^2y+3xy\)

\(H=2xy\)

Thay x = 1/4 ; y = 2012 vào H ta được

\(H=2.\dfrac{1}{4}.2012\)

\(H=1006\)

1 tháng 8 2018

1.a)\(8\left(x-2\right)-2\left(3x-4\right)=2\)

\(\Leftrightarrow8x-16-6x+8=2\)

\(\Leftrightarrow2x-8=2\Leftrightarrow2x=10\Leftrightarrow x=5\)

b)\(10\left(3x-2\right)-3\left(5x+2\right)+5\left(11-4x\right)=25\)

\(\Leftrightarrow30x-20-15x-6+55-20x=25\)

\(\Leftrightarrow-5x+29=25\Leftrightarrow-5x=-4\Leftrightarrow x=\dfrac{4}{5}=0,8\)

\(c)2x\left(x+1\right)-x^2\left(x+2\right)+x^3-x+4=0\)

\(\Leftrightarrow2x^2+2x-x^3-2x^2+x^3-x+4=0\)

\(\Leftrightarrow x+4=0\Leftrightarrow x=-4\)

\(d)4x\left(3x+2\right)-6x\left(2x+5\right)+21\left(x-1\right)=0\)

\(\Leftrightarrow12x^2+8x-12x^2-30x+21x-21=0\)

\(\Leftrightarrow-x-21=0\Leftrightarrow-x=21\Leftrightarrow x=-21\)

2.

a)\(P=\left(4x^2-3y\right)2y-\left(3x^2-4y\right)3y\)

\(\Leftrightarrow8x^2y-6y^2-9x^2y-12y^2\)

\(\Leftrightarrow x^2y-18y^2\)

tại x=-1 , y=2

ta có:\(x^2y-18y^2=\left(-1\right)^2.2-18.2^2=2-72=-70\)

vậy \(P=\left(4x^2-3y\right)2y-\left(3x^2-4y\right)3y=-70\) tại x=-1,y=2

b)\(Q=4x^2\left(5x-3y\right)-x^2\left(4x+y\right)\)

\(\Leftrightarrow20x^3-12x^2y-4x^3-x^2y\)

\(\Leftrightarrow17x^3-13x^2y\)

tại x=-1,y=2

ta có:\(17x^3-13x^2y=17\left(-1\right)^3-13\left(-1\right)^2.2=-17-26=-43\)

vậy \(Q=4x^2\left(5x-3y\right)-x^2\left(4x+y\right)=-43\)

c)\(H=x\left(x^3-y\right)+x^2\left(y-x^2\right)-y\left(x^2-3x\right)\)

\(\Leftrightarrow x^4-xy+x^2y-x^3-x^2y+3xy\)

\(\Leftrightarrow x^4+2xy-x^3\)

tại x=1/4 và y=2012

ta có:\(x^4+2xy-x^3=\left(\dfrac{1}{4}\right)^4+2.\dfrac{1}{4}.2012-\left(\dfrac{1}{4}\right)^3\approx1006\)

5 tháng 8 2017

Bài 2:

\(A=x^2+4y^2-2x+10-4xy-4y\)

\(=\left(x^2+4xy+4y^2\right)-2\left(x+2y\right)+10\)

\(=\left(x+2y\right)^2-2\left(x+2y\right)+10\)

Thay x + 2y = 5 vào biểu thức A ta được: \(A=5^2-2.5+10=25\)

\(B=\left(x^2+4xy+4y^2\right)-2\left(x+2y\right)\left(y-1\right)+y^2-2y+1\)

\(=x^2+4xy+4y^2-2xy+2x-4y^2+4y+y^2-2y+1\)

\(=x^2+2xy+y^2+2x+2y+1\)

\(=\left(x+y\right)^2+2\left(x+y\right)+1\)

Thay x + y = 5 vào biểu thức B ta được: \(B=5^2+2.5+1=25+10+1=36\)

\(C=x^2-y^2-4x=\left(x^2-4x+4\right)-y^2-4\)

\(=\left(x-2\right)^2-y^2-4\) \(=\left(x-y-2\right)\left(x-2+y\right)-4\)

Thay x + y = 2 vào C ta được: \(C=\left(x-2-y\right)\left(2-2\right)-4=0-4=-4\)

\(D=x^2+y^2+2xy-4x-4y-3\)

\(=\left(x+y\right)^2-4\left(x+y\right)-3\) Thay x + y = 4 vào D ta được:

\(D=4^2-4.4-3=16-16-3=-3\)

5 tháng 8 2017

Bài 3:

a) \(N=-9x^2+12x-5=-\left(9x^2-12x+4\right)-1\)

\(=-\left(3x-2\right)^2-1\)

Do \(\left(3x-2\right)^2\ge0\) nên \(-\left(3x-2\right)^2-1< 0\)

Vậy N < 0

b) ghi đề cẩn thận lại đi, mk k hiểu

a) Ta có: \(A=a\left(b+3\right)-b\left(3+b\right)\)

\(=a\left(b+3\right)-b\left(b+3\right)\)

\(=\left(b+3\right)\left(a-b\right)\)

Thay a=2003 và b=1997 vào biểu thức A=(b+3)(a-b), ta được:

\(A=\left(1997+3\right)\left(2003-1997\right)=2000\cdot6=12000\)

Vậy: 12000 là giá trị của biểu thức \(A=a\left(b+3\right)-b\left(3+b\right)\) tại a=2003 và b=1997

b) Ta có: \(B=b^2-8b-c\left(8-b\right)\)

\(=b\left(b-8\right)+c\left(b-8\right)\)

\(=\left(b-8\right)\left(b+c\right)\)

Thay b=108 và c=-8 vào biểu thức B=(b-8)(b+c), ta được:

\(B=\left(108-8\right)\cdot\left(108-8\right)\)

\(=100\cdot100=10000\)

Vậy: 10000 là giá trị của biểu thức \(B=b^2-8b-c\left(8-b\right)\) tại b=108 và c=-8

c) Ta có: \(C=xy\left(x+y\right)-2x-2y\)

\(=xy\left(x+y\right)-2\left(x+y\right)\)

\(=\left(x+y\right)\left(xy-2\right)\)

Thay xy=8 và x+y=7 vào biểu thức \(C=\left(x+y\right)\left(xy-2\right)\), ta được:

\(C=7\cdot\left(8-2\right)=7\cdot6=42\)

Vậy: 42 là giá trị của biểu thức \(C=xy\left(x+y\right)-2x-2y\) tại xy=8 và x+y=7

d) Ta có: \(D=x^5\left(x+2y\right)-x^3y\left(x+2y\right)+x^2y^2\left(x+2y\right)\)

\(=x^2\left(x+2y\right)\left(x^3-xy+y^2\right)\)

Thay x=10 và y=-5 vào biểu thức \(D=x^2\left(x+2y\right)\left(x^3-xy+y^2\right)\), ta được:

\(D=10^2\left[10+2\cdot\left(-5\right)\right]\left[10^3-10\cdot\left(-5\right)+\left(-5\right)^2\right]\)

\(=10^2\cdot\left(10-10\right)\cdot\left(100+50+25\right)\)

=0

Vậy: 0 là giá trị của biểu thức \(D=x^5\left(x+2y\right)-x^3y\left(x+2y\right)+x^2y^2\left(x+2y\right)\) tại x=10 và y=-5

27 tháng 7 2020

a) \(A=a\left(b+3\right)-b\left(3+b\right)\)

\(=\left(b+3\right)\left(a-b\right)\)

Thay a = 2003 và b = 1997 vào A ta có:

\(A=\left(1997+3\right)\left(2003-1997\right)\)

\(=2000.6=12000\)

b) \(B=b^2-8b-c\left(8-b\right)\)

\(=b\left(b-8\right)+c\left(-8+b\right)\)

\(=b\left(b-8\right)+c\left(b-8\right)\)

\(=\left(b-8\right)\left(b+c\right)\)

Thay b = 108 và c = -8 vào B ta có:

\(\left(108-8\right)\left(108-8\right)\)

\(=100.100=10000\)

c) \(C=xy\left(x+y\right)-2x-2y\)

\(=xy\left(x+y\right)-2\left(x+y\right)\)

\(=\left(x+y\right)\left(xy-2\right)\)

Thay xy = 8 và x + y = 7 vào C ta có:

\(7.\left(8-2\right)=7.6=42\)

d/Bạn dùng công thức trực quan để ghi công thức nhé!

a: A=2/3x^2y+4x^2y=14/3x^2y

=14/3*9*7=294

b: B=xy^2(1/2+1/3+1/6)=xy^2=3/4*1/4=3/16

c: C=x^3y^3(2+10-20)=-8x^3y^3

=-8*1^3(-1)^3=8

d: D=xy^2(2018+16-2016)

=18xy^2

=18(-2)*1/9=-4

16 tháng 10 2016

a)\(\left(x+y\right)^2:\left(x+y\right)=x+y\)

b)\(\left(x-y\right)^5:\left(y-x\right)^4=\left(x-y\right)^5:\left(x-y\right)^4=x-y\)

c)\(\left(5x^4-3x^3+x^2\right):3x^2=\frac{5}{3}x^2-x+\frac{1}{3}^{ }\)

d)\(\left(x^3y^3-\frac{1}{2}x^2y^3+x^3y^2\right):\frac{1}{2}x^2y^2=2xy-y+x\)

1 tháng 9 2020

, xy*(x+y)-2x-2y tại x+y=10

->10xy-2(x+y)=10xy-20=120-20=80

b, x^5(x+2y)-x^3y*(x+2y)+x^2y^2*x+2y=(x+2y)(x^5-x^3y+x^2y^2)

Bạn tự thay vảo nhá

1 tháng 9 2020

Vg ạ. Mình cảm ơn nhiều

1: \(F=\left(\dfrac{-1}{2}-2\right)^3-\left(-\dfrac{1}{2}+3\right)^3+\left(-2+\dfrac{3}{2}\right)^3+\left(-\dfrac{1}{2}+1\right)^2\)

\(=\dfrac{-125}{8}-\dfrac{125}{8}+\dfrac{-1}{8}+\dfrac{1}{4}\)

\(=\dfrac{-251}{8}+\dfrac{1}{4}=\dfrac{-249}{8}\)

2:\(N=\left(-1-1\right)^2-\left(-1+\dfrac{1}{8}\right)+\left(-1+1\right)^3\)

=4+1-1/8

=5-1/8=39/8

27 tháng 12 2017

a, \(x^2\) + 6x + 5 = 0
=>\(x^2\) + x + 5x +5 = 0
=>x(x + 1) + 5(x + 1) = 0
=>(x + 1)(x + 5) = 0
=> x + 1 =0 hoặc x + 5 =0
=> x = -1 hoặc x = -5

27 tháng 12 2017

c) \(\dfrac{x+3}{x-1}+\dfrac{2x+5}{x-1}+\dfrac{14-3x}{1-x}\)

\(=\dfrac{x+3}{x-1}+\dfrac{2x+5}{x-1}-\dfrac{14-3x}{x-1}\)

\(=\dfrac{x+3+2x+5-14+3x}{x-1}\)

\(=\dfrac{6x-6}{x-1}\)

\(=\dfrac{6\left(x-1\right)}{x-1}\)

\(=6.\)