Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x-2\right).\left(y-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\y-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\y=1\end{cases}}\)
Vậy \(\orbr{\begin{cases}x=2\\y=1\end{cases}}\)
Ủng hộ nha Nguyen Phuong Thao
1)(x-2)(y-1)=0
=> \(\left[{}\begin{matrix}x-2=0\\y-1=0\end{matrix}\right. \)=>\(\left[{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)
Vậy x,y\(\in\){2;1}
a; (2y+1).7^4=3.7^5
=> (2y+1).2401=50421
=> 2y+1=21
=> 2y=20
=> y= 10 . Vậy y= 10
b; 4.2y+1-3=125
=> 4. 2y.2-3=125
=> 4.2y.2=128
=> 2y.8=128
=> 2y=16
=> 2y=2^4
=> y=4 .Vậy y=4
c; 15-2.|y-3|=-5
=> 2.|y-3|=10
=> y-3=5
=> y=8 . Vậy y=8
d; 2y+5 chia hết cho y+1
=> 2(y+1)+3 chia hết cho y+1
=> 3 chia hết cho y+1
=> y+1E{ 1;3;-1;-3}
=> yE{ 0; 2;-2;-4} .Vậy y= 0;2;-2;-4
a) \(5x=2y\Rightarrow\frac{x}{2}=\frac{y}{5}\) . Đến đấy áp dụng t/c dãy tỉ số bằng nhau : \(\frac{x}{2}=\frac{y}{5}=\frac{x+y}{2+5}=\frac{15}{7}\)
\(\Rightarrow x=\frac{15}{7}.2=\frac{30}{7}\) ; \(\Rightarrow y=\frac{15}{7}.5=\frac{75}{7}\)
b) \(\frac{x}{y}=\frac{3}{7}\Rightarrow\frac{x}{3}=\frac{y}{7}\). Áp dụng t/c dãy tỉ số bằng nhau : \(\frac{x}{3}=\frac{y}{7}=\frac{x-y}{3-7}=\frac{10}{-3}\)
\(\Rightarrow x=-10\) ; \(y=-\frac{70}{3}\)
c) Sai đề vì 2x = 3y => 2x - 3y = 0 mà giả thiết lại đưa ra 2x - 3y = 15 => mâu thuẫn
d) \(\frac{x+3y}{x-2y}=\frac{2}{3}\Leftrightarrow3\left(x+3y\right)=2\left(x-2y\right)\)
\(\Leftrightarrow3x+9y=2x-4y\Leftrightarrow x=-13y\)
Thay x = -13y vào x+2y = 1 được :
x + 2y = 1 => (-13y) + 2y = 1 => -11y = 1 => y = -1/11
=> x = -1/11 . -13 = 13/11
Câu b) mình có nhầm xíu : \(\frac{x}{3}=\frac{y}{7}=\frac{x-y}{3-7}=\frac{10}{-4}=-\frac{5}{2}\)
\(\Rightarrow x=-\frac{15}{2};y=-\frac{35}{2}\)
a) \(\left(x-1\right)\left(y+2\right)=7\)
\(\Leftrightarrow\left(x-1\right)\left(y+2\right)=1.7=7.1=\left(-1\right).\left(-7\right)=\left(-7\right).\left(-1\right)\)
Ta có bảng sau:
\(x-1\) | \(1\) | \(7\) | \(-1\) | \(-7\) |
\(y+2\) | \(7\) | \(1\) | \(-7\) | \(-1\) |
\(x\) | \(2\) | \(8\) | \(0\) | \(-6\) |
\(y\) | \(5\) | \(-1\) | \(-9\) | \(-3\) |
Vậy \(\left\{{}\begin{matrix}x=2\\y=5\end{matrix}\right.\left\{{}\begin{matrix}x=8\\y=-1\end{matrix}\right.\left\{{}\begin{matrix}x=0\\y=-9\end{matrix}\right.\left\{{}\begin{matrix}x=-6\\y=-3\end{matrix}\right.\)
b) \(\left(x-2\right)\left(2y+1\right)=17\)
\(\Rightarrow\left(x-2\right)\left(2y+1\right)=1.17=17.1=\left(-1\right).\left(-17\right)=\left(-17\right).\left(-1\right)\)
Ta có bảng sau:
\(x-2\) | \(1\) | \(17\) | \(-1\) | \(-17\) |
\(2y+1\) | \(17\) | \(1\) | \(-17\) | \(-1\) |
\(x\) | \(3\) | \(19\) | \(1\) | \(-15\) |
\(y\) | \(8\) | \(0\) | \(-9\) | \(-1\) |
Vậy \(\left\{{}\begin{matrix}x=3\\y=8\end{matrix}\right.\left\{{}\begin{matrix}x=19\\y=0\end{matrix}\right.\left\{{}\begin{matrix}x=1\\y=-9\end{matrix}\right.\left\{{}\begin{matrix}x=-15\\y=-1\end{matrix}\right.\)
(x-3).(2y+1)=7
(x-3).(2y+1)= 1.7 = (-1).(-7)
Cứ cho x - 3 = 1 => x= 4
2y + 1 = 7 => y = 3
Tiếp x - 3 = 7 => x = 10
2y + 1 = 1 => y = 0
x-3 = -1 ........
`x(y+1) + 2y = 7`
`x(y + 1) + 2y + 2 = 9`
`x(y + 1) + 2(y + 1)=9`
`(y+1)(x+2) = 9`
Trường hợp 1: y+1 = 1 và x+2 = 9
Trường hợp 2: y+1 = 9 và x+2 = 1
Trường hợp 3: y+1 = -1 và x+2 = -9
Trường hợp 4: y+1 = -9 và x+2 = -1
Trường hợp 5: y+1 = 3 và x+2 = 3
Trường hợp 6: y+1 = -3 và x+2 = -3
Suy ra:
Trường hợp 1: y = 0, x = 7
Trường hợp 2: y = 8, x = -1
Trường hợp 3: y = -2, x = -11
Trường hợp 4: y = -10, x = -3
Trường hợp 5: y = 2, x = 1
Trường hợp 6: y = -4, x = -5