K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 12 2024

gọi số cần tìm là x

 

Ta có x:11dư 6 => x+5 : 11

 

         x:17du 12 =>x+5:17

 

         x:29 du 24=>x+5:29

 

=>x+5=BC(11,17,29)

 

ta co 11,17,19 đều là các số nguyên tố cùng nhau đôi một 

 

=>BCNN(11,17,29) =5423

 

Vay x =5423-5=5418

14 tháng 12 2021
(-8).25(-2). 4.(-5).125
22 tháng 12 2022

gọi số cần tìm là x

 

Ta có x:11dư 6 => x+5 : 11

 

         x:17du 12 =>x+5:17

 

         x:29 du 24=>x+5:29

 

=>x+5=BC(11,17,29)

 

ta co 11,17,19 đều là các số nguyên tố cùng nhau đôi một 

 

=>BCNN(11,17,29) =5423

 

Vay x =5423-5=5418

18 tháng 12 2017

Gọi số cần tìm là x: 
x=11a+6=17b+12=29c+24 (a,b,c la STN) 
=>x=11m-5=17n-5=29p-5 (m,n,p la STN) 
=>x+5=11m=17n=29p TỨC LÀ x CHIA HẾT CHO 11,17,29 (3 SỐ NÀY SỐ NGUYÊN TỐ CÙNG NHAU) 
x MIN =>x+5=11.17.29=5423 
=>x= 5418. 
\(OK\)

18 tháng 12 2017

\(\frac{ }{ }\)

27 tháng 11 2015

gọi số đó là a

ta có : a chia 11,17,29 dư 6,12,24

=>a+5 chia hết cho 11,17,29

mà a nhỏ nhất 

=>a+5 thuộc BCNN(11;17;29)

11=11

17=17

29=29

=>BCNN(11,17,29)=5423

=>a+5=5423

=>a=5418

6 tháng 11 2016

N =122

26 tháng 11 2018

N=122

4 tháng 12 2016

a) n chia 11 dư 6, chia 17 dư 12, chia 29 dư 24 => n chia 11;17;29 đều thiếu 5

=>n+5 chia hết cho 11;17;29

Vì n nhỏ nhất =>n+5 là BCNN(11;17;29)

Vì 11;17;29 nguyên tố cùng nhau

=>n+5= BCNN(11;17;29)=11x17x29=5423

=>n=5423-5=5418

b) Gọi số tự nhiên cần tìm là x

x chia 13 dư 8, chia 19 dư 14 => x chia 13;19 đều thiếu 5

=> x+5 chia hết cho 13;19 Vì x nhỏ nhất => x+5 là BCNN(13;19)

Vì 13;19 nguyên tố cùng nhau

=> x+5=BCNN(13;19)=13x19=247

=> x+5 thuộc B(247)={0;247;494;741;988;1235;1482;...}

Để có số tận cùng là 7 => x+5 tận cùng là 2 => x+5=1482

x=1482-5

x=1477

29 tháng 8 2021

Bài 1: 
Do n chia 3 dư 2 nên n = 3a + 2 (a ∈ N).
Ta có 2
​n - 1 = 2(3a + 2) - 1 = 2.3a + 3 = 3(2a + 1) nên 2n - 1 ​chia hết cho 3 (1)
Tương tự, ta có:
n = 5b + 3 (b ∈ N); 2n - 1 = 2(5b + 3) - 1 = 2.5b + 5 = 5(2b + 1) nên 2n - 1 chia hết cho 5 (2)
n = 7c + 4 (c ∈ N); 2n - 1 = 2(7c + 4) - 1 = 2.7c + 7 = 7(2c + 1) nên 2n - 1 chia hết cho 7 (3)
Từ (1), (2), (3) và yêu cầu tìm số n nhỏ nhất, ta có 2n - 1 là BCNN(3, 5, 7). Do 3, 5, 7 là các số nguyên tố cùng nhau nên BCNN(3, 5, 7) = 3.5.7 = 105. Vậy 2n - 1 = 105 => 2n = 105 + 1 = 106 => n = 106:2 = 53

Bài 2:
Do n chia 8 dư 7 nên n = 8a + 7 (a ∈ N).
Ta có n + 65 = 8a + 7 + 65 = 8a + 72 = 8(a + 9)
 ​chia hết cho 8 (1)
Tương tự, n chia 31 dư 28 nên n = 31b + 28 (b ∈ N)
Ta có n + 65 = 31b + 28 + 65 = 31b + 93 = 31(b + 3) ​chia hết cho 32 (2)
Từ (1) và (2) ta có n + 65 là UC(8, 31). Do 8 và 31 là các số nguyên tố cùng nhau nên UC(8, 31) có dạng 8.31m =  248m (m ∈ N).
Như vậy: n + 65 = 248m, (m ∈ N) => n = 248m - 65, (m ∈ N) (3)
Theo đề bài, ta cần tìm n là số lớn nhất có ba chữ số thỏa mãn điều kiện (3)
Xét m = 5, ta có n = 248.5 - 65 = 1240 - 65 = 1175 không đáp ứng điều kiện n có ba chữ số
Xét m = 4, ta có n = 248.4 - 65 = 992 - 65 = 927, đáp ứng điều kiện n có ba chữ số
Vậy n = 927 là số lớn nhất có ba chữ số thỏa mãn điều kiện của đề bài

29 tháng 8 2021

Bài 1:
Do n chia 3 dư 2 nên n = 3a + 2 (a ∈ N).

Ta có 2n - 1 = 2(3a + 2) - 1 = 2.3a + 3 = 3(2a + 1) nên 2n - 1 chia hết cho 3 (1)
Tương tự, ta có:
n = 5b + 3 (b ∈ N); 2n - 1 = 2(5b + 3) - 1 = 2.5b + 5 = 5(2b + 1) nên 2n - 1 chia hết cho 5 (2)
n = 7c + 4 (c ∈ N); 2n - 1 = 2(7c + 4) - 1 = 2.7c + 7 = 7(2c + 1) nên 2n - 1 chia hết cho 7 (3)
Từ (1), (2), (3) và yêu cầu tìm số n nhỏ nhất, ta có 2n - 1 là BCNN(3, 5, 7). Do 3, 5, 7 là các số nguyên tố cùng nhau nên BCNN(3, 5, 7) = 3.5.7 = 105. Vậy 2n - 1 = 105 => 2n = 105 + 1 = 106 => n = 106:2 = 53
Vậy n = 53 là số tự nhiên nhỏ nhất thỏa điều kiện của đề bài

Bài 2: 

Do n chia 8 dư 7 nên n = 8a + 7 (a ∈ N).

Ta có n + 65 = 8a + 7 + 65 = 8a + 72 = 8(a + 9) chia hết cho 8 (1)
Tương tự, n chia 31 dư 28 nên n = 31b + 28 (b ∈ N)
Ta có n + 65 = 31b + 28 + 65 = 31b + 93 = 31(b + 3) chia hết cho 32 (2)
Từ (1) và (2) ta có n + 65 là UC(8, 31). Do 8 và 31 là các số nguyên tố cùng nhau nên UC(8, 31) có dạng 8.31m =  248m (m ∈ N).
Như vậy: n + 65 = 248m, (m ∈ N) => n = 248m - 65, (m ∈ N) (3)
Theo đề bài, ta cần tìm n là số lớn nhất có ba chữ số thỏa mãn điều kiện (3)
Xét m = 5, ta có n = 248.5 - 65 = 1240 - 65 = 1175 không đáp ứng điều kiện n có ba chữ số
Xét m = 4, ta có n = 248.4 - 65 = 992 - 65 = 927, đáp ứng điều kiện n có ba chữ số
Vậy n = 927 là số lớn nhất có ba chữ số thỏa mãn điều kiện của đề bài