Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: \(x\).(\(x-y\)) = \(\dfrac{3}{10}\) và y(\(x-y\)) = - \(\dfrac{3}{50}\)
\(x\)(\(x\) - y) - y(\(x\) - y) = \(\dfrac{3}{10}\) - ( - \(\dfrac{3}{50}\))
(\(x-y\)).(\(x-y\)) = \(\dfrac{3}{10}\) + \(\dfrac{3}{50}\)
(\(x-y\))2 = \(\dfrac{15}{50}\) + \(\dfrac{3}{50}\)
(\(x\) - y)2 = \(\dfrac{9}{25}\) = (\(\dfrac{3}{5}\))2
\(\left[{}\begin{matrix}x-y=-\dfrac{3}{5}\\x-y=\dfrac{3}{5}\end{matrix}\right.\)
TH1 \(x-y=-\dfrac{3}{5}\) ⇒ \(\left\{{}\begin{matrix}x.\left(-\dfrac{3}{5}\right)=\dfrac{3}{10}\\y.\left(-\dfrac{3}{5}\right)=-\dfrac{3}{50}\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}x=\dfrac{3}{10}:\left(-\dfrac{3}{5}\right)=\dfrac{-1}{2}\\y=-\dfrac{3}{50}:\left(-\dfrac{3}{5}\right)=\dfrac{1}{10}\end{matrix}\right.\)
TH2: \(x-y=\dfrac{3}{5}\) ⇒ \(\left\{{}\begin{matrix}x.\dfrac{3}{5}=\dfrac{3}{10}\\y.\dfrac{3}{5}=-\dfrac{3}{50}\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}x=\dfrac{3}{10}:\dfrac{3}{5}=\dfrac{1}{2}\\y=-\dfrac{3}{50}:\dfrac{3}{5}=-\dfrac{1}{10}\end{matrix}\right.\)
Vậy (\(x;y\) ) = (- \(\dfrac{1}{2}\); \(\dfrac{1}{10}\)); (\(\dfrac{1}{2}\); - \(\dfrac{1}{10}\))
a. Vì \(\left|x+\frac{1}{2}\right|\ge0\forall x;\left|y-\frac{3}{4}\right|\ge0\forall y;\left|z-1\right|\ge0\forall z\)
\(\Rightarrow\left|x+\frac{1}{2}\right|+\left|y-\frac{3}{4}\right|+\left|z-1\right|\ge0\forall x;y;z\)
Dấu "=" xảy ra <=> | x + 1/2 | = 0 ; | y - 3/4 | = 0 ; | z - 1 | = 0
<=> x = - 1/2 ; y = 3/4 ; z = 1
b. Vì \(\left|x-\frac{3}{4}\right|\ge0\forall x;\left|\frac{2}{5}-y\right|\ge0\forall y\left|x-y+z\right|\ge0\forall x;y;z\)
\(\Rightarrow\left|x-\frac{3}{4}\right|+\left|\frac{2}{5}-y\right|+\left|x-y+z\right|\ge0\forall x;y;z\)
Dấu "=" xảy ra <=> | x - 3/4 | = 0 ; | 2/5 - y | = 0 ; | x - y + z | = 0
<=> x = 3/4 ; y = 2/5 ; z = - 7/20
a) Ta có \(\hept{\begin{cases}\left|x+\frac{1}{2}\right|\ge0\forall x\\\left|y-\frac{3}{4}\right|\ge0\forall y\\\left|z-1\right|\ge0\forall z\end{cases}}\Rightarrow\left|x+\frac{1}{2}\right|+\left|y-\frac{3}{4}\right|+\left|z-1\right|\ge0\forall x;y;z\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x+\frac{1}{2}=0\\y-\frac{3}{4}=0\\z-1=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-\frac{1}{2}\\y=\frac{3}{4}\\z=1\end{cases}}\)
Vậy x = -1/2 = y = 3/4 ; z = 1
b) Ta có : \(\hept{\begin{cases}\left|x-\frac{3}{4}\right|\ge0\forall x\\\left|\frac{2}{5}-y\right|\ge0\forall y\\\left|x-y+z\right|\ge0\forall x;y;z\end{cases}}\Rightarrow\left|x-\frac{3}{4}\right|+\left|\frac{2}{5}-y\right|+\left|x-y+z\right|\ge0\forall x;y;z\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-\frac{3}{4}=0\\\frac{2}{5}-y=0\\x-y+z=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{3}{4}\\y=\frac{2}{5}\\\frac{3}{4}-\frac{2}{5}+z=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{3}{4}\\y=\frac{2}{5}\\z=-\frac{7}{20}\end{cases}}\)
Vậy x = 3/4 ; y = 2/5 ; z = -7/20
\(a)\)Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
\(\frac{2x+3}{5x+2}=\frac{4x+5}{10x+2}=\frac{2\cdot(2x+3)-(4x+5)}{2\cdot(5x+2)-(10x+2)}=\frac{4x+6-4x-5}{10x+4-10x-2}=\frac{1}{2}\)
Suy ra :
\(\frac{2x+3}{5x+2}=\frac{1}{2}\Rightarrow1\cdot(5x+2)=2\cdot(2x+3)\)
\(5x+2=4x+6\)
\(5x-4x=6-2\)
\(x=4\)
\(b)\)Ta có : \(\frac{4}{x-3}=\frac{8}{y-6}=\frac{20}{z-15}\)
\(\Rightarrow\frac{x-3}{4}=\frac{y-6}{8}=\frac{z-15}{20}\)
\(\Rightarrow\frac{x}{4}-\frac{3}{4}=\frac{y}{8}-\frac{6}{8}=\frac{z}{20}-\frac{15}{20}\)
\(\Rightarrow\frac{x}{4}-\frac{3}{4}=\frac{y}{8}-\frac{3}{4}=\frac{z}{20}-\frac{3}{4}\)
\(\Rightarrow\frac{x}{4}=\frac{y}{8}=\frac{z}{20}\)
Đặt : \(\frac{x}{4}=\frac{y}{8}=\frac{z}{20}=k\Rightarrow x=4k;y=8k;z=20k\)
Thay vào đề , ta có : xyz = 640
\(\Rightarrow4k\cdot8k\cdot20k=640\)
\(\Rightarrow640k^3=640\)
\(\Rightarrow k^3=1\)
\(\Rightarrow k=1\)
\(\Rightarrow x=4;y=8;z=20\)
Vậy
Điều kiên \(y\ne0\)
\(\frac{x}{y}=16\Rightarrow x=16y\)thế vào \(\frac{x}{y^2}=2\)
\(\Rightarrow\frac{16y}{y^2}=2\Rightarrow\frac{16}{y}=2\Rightarrow y=8\) thế vào \(\frac{x}{y}=16\Rightarrow\frac{x}{8}=16\Rightarrow x=8.16=128\)
tìm x biếtxy2 =2vàxy =16(y≠0)
\(\Rightarrow x=y^2.2\)
Vì Y khác 0 nên y = 1
\(\Rightarrow x=1^2.2\)
\(\Rightarrow x=2\)
Vậy x = 2
Cái câu đầu bn nhập sai rùi
Câu 2
\(x^5=2x^7\)
\(\frac{x^5}{x^7}=2\)
\(\frac{1}{x^2}=2\)
\(\left(\frac{1}{x}\right)^2=2\)
\(\frac{1}{x}=\sqrt{2}\)
Câu cuối
Ta thấy 2, 3, 5 đều là số nguyên tố nên
Ta phân tích 144 thành số nguyên tố \(2^4\cdot3^2\)
Thay vào Ta tính x=6; y=5
Vì số nào lũy thừa 0 lên cũng bằng 1 nên
Ta có thể viết \(144=2^4\cdot3^2\cdot5^0\)
Thay vào ta tính z=1
o phan dau tien ta co
x-5nhan căn bậc hai của x bằng 0
=>5 nhan can bac hai cua x bang x
=>ta co the thay x bang 5 nhan can bac hai cua x
thay vao ta duoc 5 nhan can bac hai cua x nhan voi5 nhan can bac hai cua x bang x^2
25*x=x^2=x*x
suy ra x=25
vay x=25
o phan tiep theo
x5=2x7
=>x.x.x.x.x.1=2.x.x.x.x.x.x.x
=>1=2.x.x
=>1/2=x*x
=>x= can bac hai cua 1/2
o phan cuoi cung
2x-2.3y-3.5z-1=144
=>2^x/4.3^y/9.5^z/5=144
=>2^x.3^y.5^z=144/4/9/5=0.8
ma o day ta thay 0.8 khong chua h chia het cho y x va z
vay ko co cap x y z nao thoa man
Em chỉ giải phần B thôi nhé !
x/4=y/3=x-y/4-3=x2-y2=42-32=28/7=4
Suy ra x/4=4 -> x= 16
y/3=4-> y =12
chị thông cảm em mói học lop 6 dung thi dung sai thi sai dung la em nha
a) Ta có : \(\frac{x}{y}=\frac{6}{5}\) => \(\frac{x}{6}=\frac{y}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{6}=\frac{y}{5}=\frac{x+y}{6+5}=\frac{121}{11}=11\)
=> x = 11.6 = 66,y = 11.5 = 55
b) 4x = 5y => \(\frac{x}{5}=\frac{y}{4}\)=> \(\frac{2x}{10}=\frac{5y}{20}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{2x}{10}=\frac{5y}{20}=\frac{2x-5y}{10-20}=\frac{40}{-10}=-4\)
=> x = (-4).5 = -20 , y = (-4).4 = -16
c) Đặt \(\frac{x}{3}=\frac{y}{16}=t\Rightarrow\hept{\begin{cases}x=3t\\y=16t\end{cases}}\)
=> xy = 3t.16t = 48t2
=> 48t2 = 192
=> t2 = 4
=> t = \(\pm\)2
Với t = 2 thì x = 3.2 = 6,y = 16.2 = 32
Với t = -2 thì x = -6,y = -32
d) \(\frac{x}{-3}=\frac{y}{7}\)
=> \(\frac{x^2}{9}=\frac{y^2}{49}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x^2}{9}=\frac{y^2}{49}=\frac{x^2-y^2}{9-49}=\frac{-360}{-40}=9\)
=> x2 = 9.9 = 81 => x = \(\pm\)9
y2 = 9.49 = 441 => y = \(\pm\)21
Câu e,f tương tự
x=4 y=2
bn giải chi tiết hộ mik dc khum T-T