Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
p và 10p+1 nguyên tố và p>3 => p=3k+1 vì nếu 3k+2 => 10p+1 không nto do chia hết cho 3
với p=3k+1
=> 17p+1=17.3+17+1=17.3+18 chia hết cho 3=> dpcm
Điều kiện: n > 3
Xét 3 số tự nhiên liên tiếp: n^2 - 1; n^2; n^2 + 1, trong 3 số này có 1 số chia hết cho 3
Do n nguyên tố > 3 => n không chia hết cho 3 => n^2 không chia hết cho 3
Mà n^2 - 1 nguyên tố > 3 vì n > 3 => n^2 + 1 chia hết cho 3
Mà n^2 + 1 > 3 => n^2 + 1 là hợp số ( đpcm)
Câu 1:
a: p=3 thì 3+2=5 và 3+10=13(nhận)
p=3k+1 thì p+2=3k+3(loại)
p=3k+2 thì p+10=3k+12(loại)
b: p=3 thì p+10=13 và p+20=23(nhận)
p=3k+1 thì p+20=3k+21(loại)
p=3k+2 thì p+10=3k+12(loại)
2.
p là số nguyên tố > 3 => p lẻ p + d là số nguyên tố => p + d lẻ mà p lẻ => d chẵn => d chia hết cho 2 +) Xét p = 3k + 1 Nếu d chia cho 3 dư 1 => d = 3m + 1 => p + 2d = 3k + 1 + 2. (3m +1) = 3k + 6m + 3 chia hết cho 3 => không là số nguyên tố Nếu d chia cho3 dư 2 => d = 3m + 2 => p +d = 3k + 1 + 3m + 2 = 3k + 3m + 3 => p + d không là số nguyên tố => d chia hết cho 3 +) Xét p = 3k + 2 Nếu d chia cho 3 dư 1 => d = 3m + 1 => p + d = 3k + 2 + 3m + 1 = 3k + 3m + 3 => p + d không là số ngt Nếu d chia cho 3 dư 2 => d = 3m + 2 => p + 2d = 3k + 6m + 6 => p + 2d không là số ngt => d chia hết cho 3 Vậy d chia hết cho cả 2 và 3 => d chia hết cho 6
1.(cái cho p và p+20..)
p là số nguyên tố và p> 3 => p=3k+1 hoặc p=3k+2
Nếu p=3k+1=> p+20=3k+1+20=3k+21 chia hết cho 3 (loại) vì p+20 phải là snt
Nếu p=3k+2 =>p+20=3k+2+20=3k+22 không chia hết cho 3 (chọn)
p+25=3k+2+25=3k+27 chia hết cho 3
Nên p+25 là hợp số
sorry e mới học lớp 4 thôi mún giúp chị lắm nhưng em ko biết làm ạ
Sorry chị em Ko giải được vì em mới học lớp 5 thôi chưa học lớp 6 đâu nha
Gọi hai số nguyên tố cần tìm là a và b Ta có quy tắc : số chẵn + số lẻ =số lẻ Theo đề bài cho tổng a và b = 601 (số lẻ ). Nên ta có a là số chẵn mà là số nguyên tố . Vậy a là hai vì hai là số nguyên tố chẵn duy nhất Từ các lập luận trên ta có biểu thức : a+b=601. 2+b=601. b=601-2. b=599. Vậy b =599.hai số nguyên tố cần tìm là 2 và 599 ( bài 1)
1) Ta có : P và P+14 là số nguyên tố thì P là số lẻ
nên P+17 là số chẵn suy ra P+17 là hợp số.
Do p>3 và p là số nguyên tố nên p có dạng 3k+1 hoặc 3k+2 ( k ϵ N*)
TH1:Với p=3k+1
Khi đó : p+14=3k+1+14=3k+15=3(k+5)⋮3
Lại có p+14 >3 nên p+14 là hợp số (loại)
TH2:Với p=3k+2
Khi đó : p+10=3k+2+10=3k+12=3(k+4)⋮3
Lại có p+10 > 3 nên p+10 là hợp số (đpcm)
Vậy với p và p+3 là số nguyên tố ( p>3) thì p+10 luôn là hợp số ( đpcm )