Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì ( n+6 ) (n+7) là tích 2 số tự nhiên liên tiếp
=> (n+6)(n+7) chia hết cho 2
b) n^2 + n + 3 = n(n+1) +3
Vì n(n+1) là tích 2 số tự nhiên liên tiếp => n(n+1) chia hết cho 2
mà 3 ko chia hết cho 2
=> n(n+1) +3 ko chia hết cho 2
=>n^2 + n ko chia hết cho 2
a. Giả sự n chia hết cho 2 => n+6 chia hết cho 2 => A chia hết cho 2
Giả sư n ko chia hết cho 2 => n + 7 chia hết cho 2 => A chia hết cho 2
b. Giả sử n chia hết cho 2 => n^2 chia hết cho 2 => n^2 + n chia hết cho 2 => B ko chia hết cho 2
Gia sử n ko chia hết cho 2 => n^2 ko chia hết cho 2. => n^2 + n chia hết cho 2 => B ko chia hết cho 2
Với n => n+7 chia hết cho 2.
Với n chẵn => n+6 chia hết cho 2.
Do trong tích (n+6).(n+7) luôn có 1 số chia hết cho 2 => (n+6).(n+7) chia hết cho 2.
1) +Với n là số chẵn => n+3 lẻ và n+6 chẵn. Vì 1 số chẵn và 1 số lẻ nhân với nhau tạo thành số chẵn hay tích đó chia hết cho 2 ( đpcm)
+Với n là số lẻ => n+3 chẵn và n+6 lẻ ( tương tự câu trên)
2)Tg tự câu a
a) ta có: (n+6)(n+7) là tích của 2 số tự nhiên liên tiếp => trong đó nhất định có một số chia hết cho 2 => tích sẽ luôn luôn chia hết cho 2
b) với n=2k ( n chẵn) => n^2+n+3= 4k^2+2k+3
4k^2 chia hết cho 2k chia hết cho 2 nhưng +3 => k chia hết cho 2
với n=2k+1 ( n lẻ) => n^2+n+3=\(\left(2k+1\right)^2+2k+1+3=4k^2+6k+5\) giải thích như trên
=> k chia hết cho 2 với mọi n
1.
$4-n\vdots n+1$
$\Rightarrow 5-(n+1)\vdots n+1$
$\Rightarrow 5\vdots n+1$
$\Rightarrow n+1\in \left\{1; 5\right\}$
$\Rightarrow n\in \left\{0; 4\right\}$
2.
Nếu $n$ chẵn $\Rightarrow n+6$ chẵn.
$\Rightarrow (n+3)(n+6)$ chẵn $\Rightarrow (n+3)(n+6)\vdots 2$
Nếu $n$ lẻ $\Rightarrow n+3$ chẵn.
$\Rightarrow (n+3)(n+6)$ chẵn $\Rightarrow (n+3)(n+6)\vdots 2$
a,Gọi 3 số tự nhiên liên tiếp là: a, a+1, a+2
Đặt A=a+a+1+a+2 = 3a+3=3(a+1)\(⋮\)3
=> A chia hết cho 3
=> Tổng của 3 số tự nhiên liên tiếp chia hết cho 3 (đpcm)
b, Đặt B=n(n+1)(2n+1)
Ta có 6= 2.3
*CM B=n(n+1)(2n+1) chia hết cho 2
-Nếu n chẵn => n chia hết cho 2
=> B chia hết cho 2 (1)
-Nếu n lẻ => n+1 chẵn
=> n+1 chia hết cho 2
=>B chia hết cho 2 (2)
Từ (1) và (2) suy ra B chia hết cho 2 (với mọi n) (*)
*CM B chia hết cho 3
-Nếu n=3k => n chia hết cho 3 => B chia hết cho 3 (3)
- Nếu n=3k+1 => 2n+1=2(3k+1) +1=6k+2+1=6k+3=3(2k+1) chia hết cho 3 => B chia hết cho 3 (4)
- Nếu n=3k+2 => n+1= 3k+2+1=3k+3 =3(k+1) chia hết cho 3 => B chia hết cho 3 (5)
Từ (3), (4) và (5) suy ra B chia hết cho 3 (với mọi n) (**)
Từ (*) và (**) suy ra B chia hết cho 2 và 3
=> B chia hết cho 2.3
=> B chia hết cho 6 (với mọi n) (đpcm)
A = n3 – n (có nhân tử chung n)
= n(n2 – 1) (Xuất hiện HĐT (3))
= n(n – 1)(n + 1)
n – 1; n và n + 1 là ba số tự nhiên liên tiếp nên
+ Trong đó có ít nhất một số chẵn ⇒ (n – 1).n.(n + 1) ⋮ 2
+ Trong đó có ít nhất một số chia hết cho 3 ⇒ (n – 1).n.(n + 1) ⋮ 3
Vậy A ⋮ 2 và A ⋮ 3 nên A ⋮ 6.