Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
$x^2-2x+5y^2-4y+2020=(x^2-2x+1)+5(y^2-\frac{4}{5}y+\frac{2^2}{5^2})+\frac{10091}{5}$
$=(x-1)^2+5(y-\frac{2}{5})^2+\frac{10091}{5}$
$\geq \frac{10091}{5}$
Vậy GTNN của biểu thức là $\frac{10091}{5}$. Giá trị này đạt được tại $(x-1)^2=(y-\frac{2}{5})^2=0$
$\Leftrightarrow x=1; y=\frac{2}{5}$
b)
\(B=(x-5)^2-(3x-7)^2=(x-5-3x+7)(x-5+3x-7)\)
\(=(2-2x)(4x-12)=8(1-x)(x-3)=8(x-3-x^2+3x)\)
\(=8(4x-3-x^2)=8[1-(x^2-4x+4)]=8[1-(x-2)^2]\)
Vì $(x-2)^2\geq 0, \forall x\in\mathbb{R}$ nên $1-(x-2)^2\leq 1$
$\Rightarrow B=8[1-(x-2)^2]\leq 8$. Vậy GTLN của biểu thức là $8$ khi $x=2$
c)
$C=5-x^2+2x-9y^2-6y=5-(x^2-2x)-(9y^2+6y)$
$=7-(x^2-2x+1)-(9y^2+6y+1)=7-(x-1)^2-(3y+1)^2$
Vì $(x-1)^2\geq 0; (3y+1)^2\geq 0$ với mọi $x,y$ nên $C=7-(x-1)^2-(3y+1)^2\leq 7$
Vậy GTLN của $C$ là $7$. Giá trị này đạt được tại $(x-1)^2=(3y+1)^2=0$
$\Leftrightarrow x=1; y=\frac{-1}{3}$
d)
$D=-5x^2-9y^2-7x+18y-2015=-(5x^2+7x)-(9y^2-18y)-2015$
$=-5(x^2+\frac{7}{5}x+\frac{7^2}{10^2})-9(y^2-2y+1)-\frac{40071}{20}$
$=-5(x+\frac{7}{10})^2-9(y-1)^2-\frac{40071}{20}$
$\leq -\frac{40071}{20}$
Vậy GTLN của biểu thức là $\frac{-40071}{20}$ khi $x=-\frac{-7}{10}; y=1$
a: \(A=x^2+3x+\dfrac{9}{4}+y^2-6y+9+1993.75\)
\(=\left(x+\dfrac{3}{2}\right)^2+\left(y-3\right)^2+1993.75>=1993.75\)
Dấu '=' xảy ra khi x=-3/2 và y=3
b: \(=3\left(x^2+\dfrac{7}{3}x+3\right)\)
\(=3\left(x^2+2\cdot x\cdot\dfrac{7}{6}+\dfrac{49}{36}+\dfrac{59}{36}\right)\)
\(=3\left(x+\dfrac{7}{6}\right)^2+\dfrac{59}{12}>=\dfrac{59}{12}\)
Dấu '=' xảy ra khi x=-7/6
c: \(=4\left(x^2-\dfrac{15}{4}x+5\right)\)
\(=4\left(x^2-2\cdot x\cdot\dfrac{15}{8}+\dfrac{225}{64}+\dfrac{95}{64}\right)\)
\(=4\left(x-\dfrac{15}{8}\right)^2+\dfrac{95}{16}>=\dfrac{95}{16}\)
Dấu '=' xảy ra khi x=15/8
\(A=3\left(x-\frac{5}{6}\right)^2+\frac{11}{12}\)
\(B=2\left(x-\frac{3}{4}\right)^2+\frac{23}{8}\)
\(C=\left(x+\frac{3}{2}\right)^2+\frac{11}{4}\)
\(D=\left(x-5\right)^2+\left(3y+1\right)^2+4\)
\(E=\left(4x+1\right)^2+\left(y-2\right)^2+1\)
\(M=-\left(x+\frac{7}{2}\right)^2-\frac{11}{4}\)
\(N=-5\left(x-\frac{3}{5}\right)^2-\frac{41}{5}\)
\(C\) đề sai ví dụ \(x=3\Rightarrow C=2>0\)
\(D=-5\left(x-\frac{7}{10}\right)^2-\frac{131}{20}\)
dài quá mình làm 3 câu đầu thôi nhé!
a)7x^2-14xy
=7x(x-2y)
b) 3x^2-6xy+3y^2
=3(x^2-2xy+y^2)
c) x^2-4z^2-2xy+y^2
=(x^2-2xy+y^2)-4z^2
=(x-y-2z)(x-y+2z)
=3(x-y)^2
c)
Mk chỉ làm hai bài đầu gợi ý thôi chứ mk cũng ko đủ TG
a)\(A=x^2-6x+15\)
\(\Leftrightarrow A=x^2-6x+9+6\)
\(\Leftrightarrow A=\left(x-3\right)^2+6\)
Vì \(\left(x-3\right)^2\ge0\)\(\Rightarrow\)\(\left(x-3\right)^2+6\ge6\)
Dấu = xảy ra khi x - 3 = 0 ; x = 3
Vậy Min A = 6 khi x=3
b)\(B=x^2+4x\)
\(\Leftrightarrow B=x^2+4x+4-4\)
\(\Leftrightarrow B=\left(x+2\right)^2-4\)
Vì \(\left(x+2\right)^2\ge0\Rightarrow\left(x+2\right)^2-4\ge-4\)\
Dấu = xảy ra khi x + 2 = 0 ; x = -2
Vậy Min B = -4 khi x =-2
bótay.com.yahoo.vn=)
a: \(x^2-3x+12\)
\(=x^2-2\cdot x\cdot\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{39}{4}\)
\(=\left(x-\dfrac{3}{2}\right)^2+\dfrac{39}{4}>=\dfrac{39}{4}\forall x\)
Dấu '=' xảy ra khi \(x-\dfrac{3}{2}=0\)
=>\(x=\dfrac{3}{2}\)
b: Sửa đề: \(x^2-5x+y^2-6y+19\)
\(=x^2-5x+\dfrac{25}{4}+y^2-6y+9+\dfrac{15}{4}\)
\(=\left(x-\dfrac{5}{2}\right)^2+\left(y-3\right)^2+\dfrac{15}{4}>=\dfrac{15}{4}\forall x,y\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x-\dfrac{5}{2}=0\\y-3=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=\dfrac{5}{2}\\y=3\end{matrix}\right.\)
c: \(3x^2-7x+19\)
\(=3\left(x^2-\dfrac{7}{3}x+\dfrac{19}{3}\right)\)
\(=3\left(x^2-2\cdot x\cdot\dfrac{7}{6}+\dfrac{49}{36}+\dfrac{179}{36}\right)\)
\(=3\left(x-\dfrac{7}{6}\right)^2+\dfrac{179}{12}>=\dfrac{179}{12}\forall x\)
Dấu '=' xảy ra khi \(x-\dfrac{7}{6}=0\)
=>\(x=\dfrac{7}{6}\)
d: \(x^2+2x+5y^2-6y+25\)
\(=x^2+2x+1+5\left(y^2-\dfrac{6}{5}y+\dfrac{9}{25}\right)-1-\dfrac{9}{25}\cdot5+25\)
\(=\left(x+1\right)^2+5\left(y-\dfrac{3}{5}\right)^2+\dfrac{111}{5}>=\dfrac{111}{5}\forall x,y\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x+1=0\\y-\dfrac{3}{5}=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=-1\\y=\dfrac{3}{5}\end{matrix}\right.\)