Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1,\(2x\left(x-5\right)-\left(x-2\right)^2-\left(x+3\right)\left(x-3\right)\)
\(=2x^2-10x-x^2+4x-4-x^2+9\)
\(=\left(2x^2-x^2-x^2\right)+\left(-10x+4x\right)+\left(-4+9\right)\)
\(=-6x+5\)
2,\(\left(x+1\right)^2-3\left(x-5\right)\left(x+5\right)-\left(2x-1\right)^2\)
\(=x^2+2x+1-3\left(x^2-25\right)-\left(4x^2-4x+1\right)\)
\(=x^2+2x+1-3x^2+75-4x^2+4x-1\)
\(=-6x^2+6x+75\)
3,\(\left(x-1\right)^3-\left(x-3\right)\left(x^2+3x+9\right)\)
\(=\left(x-1\right)^3-\left(x^3-27\right)\)
\(=x^3-3x^2+3x-1-x^3+27\)
\(=-3x^2+3x+26\)
4,\(\left(x+5\right)\left(x^2-5x+25\right)-\left(x+2\right)^3\)
\(=\left(x^3+125\right)-\left(x^3+6x^2+12x+8\right)\)
\(=x^3+125-x^3-6x^2-12x-8\)
\(=-6x^2-12x+117\)
5,\(2x\left(x-7\right)-\left(x+3\right)\left(x-2\right)^2+\left(x+1\right)^2\)
\(=2x^2-14x-\left(x+3\right)\left(x^2-4x+4\right)+x^2+2x+1\)
=\(2x^2-14x-x^3+4x^2-4x-3x^2+12x-12+x^2+2x+1\)
\(=-x^3+4x^2-4x+1\)
6,\(\left(2x+5\right)\left(x-3\right)-\left(x+5\right)\left(x-1\right)-\left(x-4\right)^2\)
\(=2x^2-6x+5x-15-x^2+x-5x+5-x^2+8x-16\)
\(=3x-26\)
7,\(\left(x+5\right)\left(x-5\right)\left(x+2\right)-\left(x+2\right)^3\)
=\(\left(x^2-25\right)\left(x+2\right)-x^3-6x^2-12x-8\)
\(=x^3+2x^2-25x-50-x^3-6x^2-12x-8\)
\(=-4x^2-27x-58\)
Nếu đúng thì tick cho mk nha ^_^
1: =(4x-1)^2-3(4x-1)
=(4x-1)(4x-1-3)
=4(x-1)(4x-1)
2: =-8x^4y^5(2y+3x)
3: =(a-5)^2-4b^2
=(a-5-2b)(a-5+2b)
5: =x^2-mx-nx+mn
=x(x-m)-n(x-m)
=(x-m)(x-n)
6: =(4a^2-3a-18-4a^2-3a)(4a^2-3a-18+4a^2+3a)
=(-6a-18)(8a^2-18)
=-6(2a-3)(2x+3)(a+3)
1, \(25x^2-10xy+y^2=\left(5x-y\right)^2\)
2, \(8x^3+36x^2y+54xy^2+27y^3=\left(2x+3y\right)^3\)
4, \(\left(a+b+c\right)^3-a^3-b^3-c^3\)
\(=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(a+c\right)-a^3-b^3-c^3\)
\(=3\left(a+b\right)\left(b+c\right)\left(a+c\right)\)
5, \(2x^3+3x^2+2x+3\)
\(=x^2\left(2x+3\right)+2x+3\)
\(=\left(x^2+1\right)\left(2x+3\right)\)
6, \(x^3z+x^2yz-x^2z^2-xyz^2\)
\(=x^3z-x^2z^2+x^2yz-xy^2\)
\(=xz\left(x^2-xz\right)+xz\left(xy-yz\right)\)
\(=xz\left[x\left(x-z\right)+y\left(x-z\right)\right]\)
\(=xz\left(x+y\right)\left(x-z\right)\)
8, \(x^3+3x^2y+3xy^2+y+y^3\)\(=\left(x+y\right)^3+y\)
9, \(x^2-6x+8\)
\(=x^2-4x-2x+8\)
\(=x\left(x-4\right)-2\left(x-4\right)\)
\(=\left(x-2\right)\left(x-4\right)\)
10, \(x^2-8x+12\)
\(=x^2-6x-2x+12\)
\(=x\left(x-6\right)-2\left(x-6\right)\)
\(=\left(x-2\right)\left(x-6\right)\)
Chỗ còn lại mai làm nốt nha.
Gặp chút sự cố đăng nhập nên hơi muộn, xin lỗi nha
11, \(a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)\)
\(=a^2b-a^2c+b^2c-b^2a+c^2a-c^2b\)
\(=a^2b-ab^2+abc-a^2c+b^2c-abc+ac^2-c^2b\)
\(=ab\left(a-b\right)-ac\left(a-b\right)-bc\left(a-b\right)+c^2\left(a-b\right)\)
\(=\left(a-b\right)\left(ab-ac-bc+c^2\right)\)
\(=\left(a-b\right)\left[b\left(a-c\right)-c\left(a-c\right)\right]\)
\(=\left(a-b\right)\left(a-c\right)\left(b-c\right)\)
12, \(x^3-7x-6\)
\(=x^3-3x^2+3x^2-9x+2x-6\)
\(=x^2\left(x-3\right)+3x\left(x-3\right)+2\left(x-3\right)\)
\(=\left(x-3\right)\left(x^2+3x+2\right)\)
\(=\left(x-3\right)\left(x^2+x+2x+2\right)\)
\(=\left(x-3\right)\left[x\left(x+1\right)+2\left(x+1\right)\right]\)
\(=\left(x-3\right)\left(x+2\right)\left(x+1\right)\)
13, \(x^4+4\)
\(=x^4+4x^2+4-4x^2\)
\(=\left(x^2+2\right)^2-4x^2\)
\(=\left(x^2-2x+2\right)\left(x^2+2x+2\right)\)
14, \(a^4+64\)
\(=a^4+16a^2+64-16a^2\)
\(=\left(a^2+8\right)^2-16a^2\)
\(=\left(a^2-4a+8\right)\left(a^2+4a+8\right)\)
15, \(x^5+x+1\)
\(=x^5-x^2+x^2+x+1\)
\(=x^2\left(x^3-1\right)+x^2+x+1\)
\(=x^2\left(x-1\right)\left(x^2+x+1\right)+x^2+x+1\)
\(=\left(x^2+x+1\right)\left[x^2\left(x-1\right)+1\right]\)
16, \(x^5+x-1\)
\(=x^5-x^4+x^3+x^4-x^3+x^2-x^2+x-1\)
\(=x^3\left(x^2-x+1\right)-x^2\left(x^2-x+1\right)-\left(x^2-x+1\right)\)
\(=\left(x^2-x+1\right)\left(x^3-x^2-1\right)\)
17, \(\left(x^2+x\right)^2-2\left(x^2+x\right)-15\)
\(=\left(x^2+x\right)\left(x^2+x-2\right)-15\)
19, \(\left(x^2+8x+7\right)\left(x^2+8x+15\right)+15\) (*)
Đặt \(x^2+8x+7=a\) ta có:
(*) \(\Leftrightarrow a\left(a+8\right)+15\)
\(\Leftrightarrow a^2+8a+15\)
\(\Leftrightarrow a^2+3a+5a+15\)
\(\Leftrightarrow a\left(a+3\right)+5\left(a+3\right)\)
\(\Leftrightarrow\left(a+3\right)\left(a+5\right)\)
Trả lại biến cũ ta có: (*) \(\Leftrightarrow\left(x^2+8x+10\right)\left(x^2+8x+12\right)\)
20, \(\left(x^2+3x+1\right)\left(x^2+3x+2\right)-6\) (*)
Đặt \(x^2+3x+1=a\) ta có:
(*) \(\Leftrightarrow a\left(a+1\right)-6\)
\(\Leftrightarrow a^2+a-6\)
\(\Leftrightarrow a^2+3a-2a-6\)
\(\Leftrightarrow a\left(a+3\right)-2\left(a+3\right)\)
\(\Leftrightarrow\left(a-2\right)\left(a+3\right)\)
Trả lại biến cũ ta có: (*) \(\Leftrightarrow\left(x^2+3x-1\right)\left(x^2+3x+5\right)\)
a) \(\left(4x-1\right)^2-\left(3x+2\right)\left(3x-2\right)=\left(7x-1\right)\left(x+2\right)+\left(2x+1\right)^2-\left(4x^2+7\right)\)(1)
\(\Leftrightarrow\left(16x^2-8x+1\right)-\left(9x^2-4\right)=\left(7x^2+14x-x-2\right)+\left(4x^2+4x+1\right)-\left(4x^2+7\right)\)
\(\Leftrightarrow16x^2-8x+1-9x^2+4=7x^2+13x-2+4x^2+4x+1-4x^2-7\)
\(\Leftrightarrow7x^2-8x+5=7x^2+17x-8\)
\(\Leftrightarrow7x^2-8x-7x^2-17x=-8-5\)
\(\Leftrightarrow-25x=-13\)
\(\Leftrightarrow x=\dfrac{13}{25}\)
Vậy tập nghiệm phương trình (1) là \(S=\left\{\dfrac{13}{25}\right\}\)
a/ \(\left(x+\dfrac{1}{x}\right)^2=x^2+2+\dfrac{1}{x^2}=2+7=9\)
\(\Rightarrow x+\dfrac{1}{x}=\pm3\)
Với \(x+\dfrac{1}{x}=3\) thì ta có:
\(\left(x+\dfrac{1}{x}\right)^3=x^3+\dfrac{1}{x^3}+3\left(x+\dfrac{1}{x}\right)=x^3+\dfrac{1}{x^3}+9\)
\(\Rightarrow x^3+\dfrac{1}{x^3}=27-9=18\)
Ta có: \(\left(x^2+\dfrac{1}{x^2}\right)\left(x^3+\dfrac{1}{x^3}\right)=x+\dfrac{1}{x}+x^5+\dfrac{1}{x^5}=3+x^5+\dfrac{1}{x^5}\)
\(\Rightarrow x^5+\dfrac{1}{x^5}=7.18-3=123\)
Tương tự cho trường hợp còn lại ta được ĐPCm
b/ Thay \(y=0,75x-2,5\) vào A rồi rút gọn ta được A sau đó làm như bình thường là được
=> \(5^{x+x+1+2+x}\) \(=\) \(10^8:2^8\)
=> \(5^{3x+3}=5^8\)
=> \(5^{3\left(x+1\right)}=5^8\)
=> 3(x+1) = 8
=> x + 1 = \(\dfrac{8}{3}\)
=> x = \(\dfrac{5}{3}\)