K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2020

Ta có :

\(\frac{a}{b}< \frac{c}{d}\Rightarrow\frac{a}{b}-\frac{c}{d}< 0\Leftrightarrow\frac{ad-bc}{bd}< 0\)

Mà \(b>0;d>0\Rightarrow bd>0\)

Vậy  \(\frac{ad-bc}{bd}< 0\Leftrightarrow ad-bc< 0\) 

\(\Rightarrow ad< bc\left(đpcm\right)\)

20 tháng 7 2020

Ta có : \(\frac{a}{b}< \frac{c}{d}\)

Mà \(\frac{ad}{bd}< \frac{bc}{bd}\)Khử mẫu : \(ad< bc\)

\(\Rightarrow ad-bc< 0\)Ta có đpcm 

16 tháng 6 2015

\(\frac{a}{b}<\frac{c}{d}\Leftrightarrow\frac{a.d}{b.d}<\frac{c.b}{b.d}\)

2 phân số có cùn mẫu mà \(\frac{a.d}{b.d}<\frac{c.b}{b.d}\)=>a.d<b.c

17 tháng 8

\(\frac{a}{b}\) < \(\frac{c}{d}\) (a; b; c; d ∈ Z; b >0; d > 0)

\(\frac{c}{d}>\frac{a}{b}\)

\(\frac{c}{d}\) - \(\frac{a}{b}\) > 0

\(\frac{cb-ad}{bd}\) > 0

Vì b; d> 0; \(\frac{cb-ad}{bd}\) > 0

nên \(\frac{cb-ad}{bd}\) > 0 ⇔ cb - ad > 0

⇔ cb > ad (đpcm)


28 tháng 8
ChatGPT said:

Ta cần chứng minh rằng:

\(\frac{a}{b} < \frac{c}{d} \text{l} \overset{ˋ}{\text{a}} \&\text{nbsp};đ \overset{ˊ}{\text{u}} \text{ng}\&\text{nbsp};\text{khi}\&\text{nbsp};\text{v} \overset{ˋ}{\text{a}} \&\text{nbsp};\text{ch}ỉ\&\text{nbsp};\text{khi} a d < b c\)

với các điều kiện: \(a , b , c , d \in \mathbb{Z}\)\(b > 0\)\(d > 0\).


1. Chứng minh chiều thuận:

Giả sử \(\frac{a}{b} < \frac{c}{d}\).

  • Ta sẽ bắt đầu từ bất đẳng thức \(\frac{a}{b} < \frac{c}{d}\) và nhân chéo để đưa ra kết luận:
\(\frac{a}{b} < \frac{c}{d} \Rightarrow a \cdot d < c \cdot b\)

Do \(b > 0\) và \(d > 0\) (theo giả thiết), việc nhân hai vế của bất đẳng thức với \(b\) và \(d\) không thay đổi chiều bất đẳng thức.

Vậy ta có:

\(a d < b c\)

Vậy, khi \(\frac{a}{b} < \frac{c}{d}\), thì \(a d < b c\).


2. Chứng minh chiều ngược lại:

Giả sử \(a d < b c\).

  • Ta cần chứng minh rằng \(\frac{a}{b} < \frac{c}{d}\).
  • Bất đẳng thức \(a d < b c\) có thể viết lại dưới dạng:
\(\frac{a}{b} < \frac{c}{d}\)

Do \(b > 0\) và \(d > 0\), ta có thể chia cả hai vế của bất đẳng thức \(a d < b c\) cho \(b d\) mà không thay đổi chiều bất đẳng thức.

Vậy ta có:

\(\frac{a}{b} < \frac{c}{d}\)

Kết luận:

Ta đã chứng minh rằng:

\(\frac{a}{b} < \frac{c}{d} \text{l} \overset{ˋ}{\text{a}} \&\text{nbsp};đ \overset{ˊ}{\text{u}} \text{ng}\&\text{nbsp};\text{khi}\&\text{nbsp};\text{v} \overset{ˋ}{\text{a}} \&\text{nbsp};\text{ch}ỉ\&\text{nbsp};\text{khi} a d < b c\)
17 tháng 8 2015

a,Nhân bd vào 2 vế

b,Chia bd cả 2 vế

6 tháng 9 2020

Ta có : \(\frac{a}{b}=\frac{ab}{bd},\frac{c}{d}=\frac{bc}{bd}\). Vì b > 0 , d > 0 nên bd > 0

a) Nếu \(\frac{a}{b}< \frac{c}{d}\)ta có : \(\frac{ad}{bd}< \frac{bc}{bd}\)hay ad < bc

b) Nếu ad < bc thì ta có : \(\frac{ad}{bd}< \frac{bc}{bd}\)hay \(\frac{a}{b}< \frac{c}{d}\)

20 tháng 7 2019

\(\frac{a}{b}\)<\(\frac{c}{d}\)

=> \(\frac{ad}{bd}\)<\(\frac{bc}{bd}\)(tích chéo)

=> ad<bc(điều phải chứng minh)

t.i.c.k cho a nha

a) ta có \(\frac{a}{b}=\frac{ad}{bd}\)cả tử và mẫu với d >0

            \(\frac{c}{d}=\frac{cb}{bd}\)cả tử và mẫu với b >0

vì \(\frac{a}{b}< \frac{c}{d}\)nên \(\frac{ab}{bd}< bc,db\Rightarrow ad< bc\)vì tích bd >0

7 tháng 6 2016

18/31 giữ nguyên . 181818/313131=18 nhân 10101/31 nhân 10101 = 18/31

18/31=181818/313131