Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

( Bạn tự vẽ hình nhé )
a) Xét tam giác ADC có ME//AC ( cùng ⊥ DC )( E∈DC ; M∈AD )
➝ \(\dfrac{DE}{DM}=\dfrac{DC}{DA}\) ( Hệ quả định lý TaLét )
b) Xét tam giác ADC có ME//AC ( cùng ⊥ DC )( E∈DC ; M∈AD )
➝\(\dfrac{DA}{DM}=\dfrac{DC}{DE}\) ( Hệ quả định lý TaLét ) ( 1 )
Xét tam giác DBC có NE//BC ( cùng ⊥ BD )( N∈BD ; E∈CD )
➝ \(\dfrac{DB}{DN}=\dfrac{DC}{DE}\) ( Hệ quả định lý TaLét ) ( 2 )
Từ ( 1 ) ( 2 ) ➞ \(\dfrac{DA}{DM}=\dfrac{DB}{DN}=\dfrac{DC}{DE}\)
Mà ( N∈BD ; E∈CD )
➝ MN // AB ( ĐL Talet đảo )
c) Ta có : AB // MN , BC // NE , ME//AC
Mà \(\left\{{}\begin{matrix}\text{BC , NE , BA , MN cùng thuộc bờ mặt phẳng BD}\\\text{BC , NE , CA , ME cùng thuộc bờ mặt phẳng DC}\end{matrix}\right..\text{ }\)
→ \(\widehat{ABC}=\widehat{MNE}\) ; \(\widehat{ACB}=\widehat{MEN}\)
Mà \(\widehat{ABC}=\widehat{ACB}\)
➞ ΔMNE cân tại M
➝ MN = ME
Lại có : \(\widehat{MNE}+\widehat{MNB}=90=\widehat{MEN}+\widehat{MBN}\) ( hai góc phụ nhau )
Mà \(\stackrel\frown{MNE}=\stackrel\frown{MEN}\)
➝ \(\widehat{MBN}=\widehat{MNB}\)
➞ Δ MBN cân
➝ BM = MN
Mà MN = ME
➝ MB = ME
➤ ĐPCM

, Tự vẽ hình và ghi giả thiết kết luận (mình không biết vẽ hình trên máy -_-")
Giải : Từ giả thiết ta có
D là trung điểm của AB và MO
,E là trung điểm của AC và ON
=> ED là đường trung bình của cả hai tam giác ABC và OMN
Áp dụng định lý đường trung bình vào tam giác trên ,ta được
\(\hept{\begin{cases}AD//BC,DE//MN\\DE=\frac{1}{2}BC,DE=\frac{1}{2}MN\end{cases}}\Rightarrow\hept{\begin{cases}MN//BC\\MN=BC\end{cases}}\)
Tứ giác MNCB có hai cạnh đối song song và bằng nhau nên nó là hình bình hành
Từ từ ,hình như mình làm nhầm đề :) Để mình làm lại đã rồi trả lời bn sau nhé!!!!!@@

Ta có tam giác ABC vuông tại A nên đường cao AH cũng là đường trung tuyến của tam giác ABC. Vậy ta có AH = HD.
Vì D là trung điểm của BC nên BD = CD.
Vì góc DE vuông góc với AC tại E nên tam giác ADE vuông góc tại E.
Vì F là điểm đối xứng của E qua D nên tam giác ADF cũng tại D.
Ta có:
- Tam giác ADE vuông tại E và tam giác ADF vuông tại D có cạnh chung AD.
- Tam giác ADE và tam giác ADF có cạnh AD bằng nhau (vì F là điểm đối xứng của E qua D).
Vậy tam giác ADE và tam giác ADF là hai tam giác cân có cạnh chung AD.
Do đó, ta có AE = AF và DE = DF.
Vì M là trung điểm của HC nên ta có HM = MC.
Vì FM là đường trung tuyến của tam giác HAC nên ta có FM = \(\frac{1}{2}\)AC.
Ta cần chứng minh FM vuông góc với AM.
Ta có:
- Tam giác ADE và tam giác ADF là hai tam giác cân có cạnh chung AD.
- AE = AF và DE = DF.
Do đó, tam giác ADE và tam giác ADF là hai tam giác đồng dạng (theo nguyên tắc đồng dạng cận-cạnh-cạnh).
Do đó, ta có \(\frac{AE}{DE} = \frac{AF}{DF}\).
Vì AE = AF và DE = DF nên ta có \(\frac{AE}{DE} = \frac{AF}{DF} = 1\).
Vậy tam giác ADE và tam giác ADF là hai tam giác đồng dạng cân.
Do đó, ta có góc EAD = góc FAD và góc AED = góc AFD.
Vì góc EAD + góc AED = 90° (do tam giác ADE vuông góc tại E) nên góc FAD + góc AFD = 90°.
Do đó, ta có góc FAM = 90°.
Do đó, FM vuông góc với AM.

A B C M D E H K O I
a) Xét tứ giác ADME có \(\widehat{DAE}=\widehat{AEM}=\widehat{ADM}=90^0\)
=> ADME là hình chữ nhật
=> AM= DE
b) Gọi O là giao điểm của AM và DE => OA = OM = OD = OE (2)
Do ADME là HCN => DA = ME
=> 2DA = 2ME hay DA + AI = EM + MK (vì DA = AI; ME = MK)
=> DI = EK
Xét tứ giác DIEK có DI = EK (cmt)
DI// EK (vì CEMD là HCN)
=> DKEI là hình bình hành
Do O là trung điểm của DE => KI đi qua O
=> DE cắt IK tại O và OD = OE; OK = OI (1)
Từ (1) và (2) => DE; AM; IK đồng quy tại trung điểm O của mỗi đường
c) don't know, tự làm

A B C M N D E
tA CÓ:*\(BE\perp CD;AC\perp CD\Rightarrow BE//AC\)
\(\Rightarrow\frac{DM}{AM}=\frac{DE}{EC}\)
*\(NE\perp BD;BC\perp BD\Rightarrow NE//BC\)
\(\Rightarrow\frac{DN}{NB}=\frac{DE}{EC}\)
\(\Rightarrow\frac{DM}{AM}=\frac{DN}{NB}\Rightarrow MN//AB\)(ĐỊNH LÝ TA LÉT ĐẢO) (ĐPCM)
b, \(BE//AC\Rightarrow ME//AC\Rightarrow\frac{ME}{AC}=\frac{DE}{DC}\)(1)
\(MN//AB\Rightarrow\frac{MN}{AB}=\frac{DN}{BD}\)(2)
\(NE//DC\Rightarrow\frac{DN}{BD}=\frac{DE}{CD}=\frac{NE}{BC}\)(3)
TỪ (1)(2)(3)\(\Rightarrow\frac{MN}{AB}=\frac{ME}{AC}=\frac{NE}{BC}\Rightarrow\Delta MNE~\Delta ABC\Rightarrow\widehat{MNE}=\widehat{MEN}\Rightarrow MN=ME\)(4)
MÀ \(\widehat{MNE}+\widehat{MNB}=\widehat{MEN}+\widehat{MBN}\left(=90^O\right)\Rightarrow\widehat{MNB}=\widehat{MBN}\)
\(\Rightarrow\Delta MNB\)CÂN TẠI M => \(MN=MB\)(5)
TỪ (4)(5) => MB=ME => ĐPCM

a: Xét tứ giác ADME có
\(\widehat{ADM}=\widehat{AEM}=\widehat{DAE}=90^0\)
=>ADME là hình chữ nhật
=>AM=DE
b: Xét ΔABC có
M là trung điểm của BC
MD//AC
Do đó: D là trung điểm của BA
Xét ΔABC có
M là trung điểm của BC
ME//AB
Do đó: E là trung điểm của AC
Xét ΔABC có
D,E lần lượt là trung điểm của AB,AC
=>DE là đường trung bình của ΔABC
=>DE//BC và \(DE=\dfrac{BC}{2}\)
Ta có: DE//BC
M\(\in\)BC
Do đó: BM//DE
Ta có: \(DE=\dfrac{BC}{2}\)
\(CM=MB=\dfrac{CB}{2}\)
Do đó: DE=CM=MB
Xét tứ giác BDEM có
DE//MB
DE=MB
Do đó: BDEM là hình bình hành
c: Ta có: ΔHAC vuông tại H
mà HE là đường trung tuyến
nên \(HE=\dfrac{AC}{2}\left(1\right)\)
Xét ΔABC có
M,D lần lượt là trung điểm của BC,BA
=>MD là đường trung bình của ΔABC
=>\(MD=\dfrac{AC}{2}\left(2\right)\)
Từ (1) và (2) suy ra MD=HE
Ta có: ED//BC
M,H\(\in\)BC
DO đó: ED//MH
Xét tứ giác DHME có
MH//DE
nên DHME là hình thang
Hình thang DHME có DM=HE
nên DHME là hình thang cân
a) Xét tứ giác ADME có:
∠(DAE) = ∠(ADM) = ∠(AEM) = 90o
⇒ Tứ giác ADME là hình chữ nhật (có ba góc vuông).
b) Ta có ME // AB ( cùng vuông góc AC)
M là trung điểm của BC (gt)
⇒ E là trung điểm của AC.
Ta có E là trung điểm của AC (cmt)
Chứng minh tương tự ta có D là trung điểm của AB
Do đó DE là đường trung bình của ΔABC
⇒ DE // BC và DE = BC/2 hay DE // MC và DE = MC
⇒ Tứ giác CMDE là hình bình hành.
c) Ta có DE // HM (cmt) ⇒ MHDE là hình thang (1)
Lại có HE = AC/2 (tính chất đường trung tuyến của tam giác vuông AHC)
DM = AC/2 (DM là đường trung bình của ΔABC) ⇒ HE = DM (2)
Từ (1) và (2) ⇒ MHDE là hình thang cân.
d) Gọi I là giao điểm của AH và DE. Xét ΔAHB có D là trung điểm của AB, DI // BH (cmt) ⇒ I là trung điểm của AH
Xét ΔDIH và ΔKIA có
IH = IA
∠DIH = ∠AIK (đối đỉnh),
∠H1 = ∠A1(so le trong)
ΔDIH = ΔKIA (g.c.g)
⇒ ID = IK
Tứ giác ADHK có ID = IK, IA = IH (cmt) ⇒ DHK là hình bình hành
⇒ HK // DA mà DA ⊥ AC ⇒ HK ⊥ AC
A B C D E M N
Gọi N là trung điểm CE, Xét tg CDE có
ME=MD (gt); NE=NC => MN là đường trung bình của tg CDE
=> MN//CD => MN//BC
Ta có
\(AD\perp BC\)
\(\Rightarrow MN\perp AD\)
Xét tg ADN có
\(MN\perp AD\left(cmt\right);DE\perp AC\left(gt\right)\) => M là trực tâm của tg ADN
\(\Rightarrow AM\perp DN\) (Trong tg 3 đường cao đồng quy)
Xét tg cân ABC
\(AD\perp BC\Rightarrow BD=CD\) (Trong tg cân đường cao xp từ đỉnh tg cân đồng thời là đường trung tuyến)
Xét tg BCE có
BD=CD (cmt); EN=CN => DN là đường trung bình của tg BCE
=> DN//BE mà \(AM\perp DN\left(cmt\right)\Rightarrow AM\perp BE\)