Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
10a + b chia hết cho 13
10a + b + 39b chia hết cho 13
10a + 40b chia hết cho 13
10(a + 4b) chia hết cho 13
Vì UCLN(10 ; 13) = 1
Do đó a + 4b chia hết cho 13
a) Giải
Ta có:
a + 5b ⋮ 7 ⇒10(a + 5b) ⋮ 7 ⇒10a + 50b ⋮ 7
Vì 49 ⋮ 7 ⇒49b ⋮ 7
⇒10a + (50b - 49b) ⋮ 7
⇒10a + b ⋮ 7
Vậy 10a + b ⋮ 7
Nếu (a + 4b) chia hết 13 thì 10.(a + 4b) cũng chia hết cho 13
Vì 39b chia hết cho 13
Nên 10.(a + 4b) - 39b cũng chia hết cho 13
Chứng tỏ 10a + b chia hết cho 13
(39b là mình lấy từ 10.(a + 4b) -10a + b đó bạn)
Nếu (a + 4b) chia hết 13 thì 10.(a + 4b) cũng chia hết cho 13
Vì 39b chia hết cho 13
Nên 10.(a + 4b) - 39b cũng chia hết cho 13
Chứng tỏ 10a + b chia hết cho 13
(39b là mình lấy từ 10.(a + 4b) -10a + b )
10a + b chia hết cho 13 khi a = 1 và b = 3
a = 2 đồng thời b = a x 3
a = 3 thì b = a x 3 = 3 x 3 = 9
b luôn = a x 3
xét a + 4 b = a + 4 x 3a
= a + 12a = 13a
và 13a luôn chia hết cho 13
vậy là với b = a x3 thì 10a + b chia hết cho 13 và a + 4b cũng chia hết cho 13
ta có \(a+4b⋮13\Leftrightarrow10a+40b⋮13\)
xét 10a+b=10a+40b-39b
mà \(10a+40b⋮13va-39b⋮13\)
\(\Rightarrow10a+b⋮13\)
ta co :
(a+4b)\(⋮\) 13\(\Rightarrow16\left(a+4b\right)⋮13\Leftrightarrow\left(16a+64b\right)⋮13\)
Xet:
10a+b+16a+64b=26a+65b=13(2a+5b)\(⋮\) 13
\(\Rightarrow\left(10a+b+16a+64b\right)⋮13\)
ma 16a+64b\(⋮\) 13\(\Rightarrow10a+b⋮13\) (DPCM)
ta có:\(10a+b⋮13\Rightarrow40a+4b⋮13\)
\(\Leftrightarrow39a+\left(a+4b\right)⋮13\)
mà\(39a⋮13\Rightarrow a+4b⋮13\left(đpcm\right)\)
Ta có:
3 . (a + 4b) + (10a + b) = 3a + 12b + 10a + b = (3a + 10a) + (12b + b) = 13a + 13b = 13 . (a + b) chia hết cho 13.
Mà a + 4b chia hết cho 13 nên 3 . (a + 4b) chia hết cho 13 mà tổng 3 . (a + 4b) + (10a + b) cũng chia hết cho 13
suy ra 10a + b chia hết cho 13
Ta có:
a + 4b chia hết cho 13
=>10.(a + 4b) chia hết cho 13
=>10a+40b chia hết cho 13
Mà 39b chia hết cho 13
=> (10a+40b)-39b chia hết cho 13
=>10a+b chia hết cho 13
Vậy 10a+b chia hết cho 13
Nếu a + 4b chia hết cho 13 -> 10a + 40b chia hết cho 13 (1). Lấy (1) - 39b (luôn chia hết cho 13) dc 10a +b -> 10a + b chia hết cho 13. Ngược lại cũng tương tự.
Đặt A = a + 4b; B = 10a + b
Xét hiệu: 10A - B = 10.(a + 4b) - (10a + b)
= 10a + 40b - 10a - b
= 39b
Do A chia hết cho 13 nên 10A chia hết cho 13 mà 39b chia hết cho 13
Do đó, B chia hết cho 13 hay 10a + b chia hết cho 13 (đpcm)
Giải
Ta có:
10a + b ⋮ 13
⇒10a + b + 39b ⋮ 13 (do 39 ⋮ 13)
⇒10a + 40b ⋮ 13
⇒10(a + 4b) ⋮ 13
Lại có 10a + b ⋮ 13
⇔a + 4b ⋮ 13
Vậy a + 4b ⋮ 13
Tick cho mình nha !
Lời giải
Ta thấy : (10a + b) ⋮ 13
Xét : (a + 4b) - (10a + b) ⋮ 13
= 10(a + 4b) - (10a + b) ⋮ 13
= (10a + 40b) - (10a + b) ⋮ 13
= 10a + 40b - 10a - b ⋮ 13
= (10a - 10a ) + (40b - b) ⋮ 13
= 39b ⋮ 13
Kết luận : ( a + 4b) ⋮ 13