K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 11 2024

ok đợi mk soạn

12 tháng 11 2024
Để giải bài toán này, chúng ta sẽ phân tích từng trường hợp để tìm các số nguyên tố p thỏa mãn điều kiện đã cho.


Ta biết rằng một số tự nhiên n là bình phương của một số tự nhiên khi và chỉ khi tất cả các ước số nguyên tố của n có bậc chia hết cho 2.

Trong trường hợp này, ta cần tìm các số nguyên tố p sao cho 1 + p + p^2 + p^3 + p^4 là bình phương của một số tự nhiên.

Ta có thể viết lại biểu thức trên thành một bình phương như sau: a^2 = 1 + p + p^2 + p^3 + p^4.

Thông thường, khi giải các bài toán như vậy thì ta sẽ thử nghiệm từng giá trị của p để xem liệu có tồn tại số nguyên a thỏa mãn hay không.

1. Với p = 2:
a^2 = 1 + 2 + 2^2 + 2^3 + 2^4 = 1 + 2 + 4 + 8 + 16 = 31

Ta thấy rằng 31 không phải là bình phương của một số tự nhiên.

2. Với p = 3:
a^2 = 1 + 3 + 3^2 + 3^3 + 3^4 = 1 + 3 + 9 + 27 + 81 = 121

Ta thấy rằng 121 là bình phương của 11^2.

Vậy, số nguyên tố p = 3 thỏa mãn điều kiện đã cho và tạo ra một bình phương của một số tự nhiên.
 
8 tháng 1 2018

Câu hỏi của Nguyễn Lịch Tiểu - Toán lớp 6 - Học toán với OnlineMath

Em tham khảo tại link trên nhé.

2 tháng 1 2022

Các n thỏa mãn\(\hept{\begin{cases}n\inℤ\\n>1\end{cases}}\)

bởi \(A=\frac{2\sqrt{n-1}}{\sqrt{n-1}}=2\)không phụ thuộc vào giá trị của biến nên chỉ cần điều kiện xác định của phân thức và căn bậc hai thôi.

3 tháng 9 2021

co  ai choi ff ko

10 tháng 2 2016

Ta có : p + 1 và p - 1 hơn kém nhau 2 đơn vị. Vậy p = 12

Mjk ko chắc

10 tháng 2 2016

Ta có p - 1 & p + 1 hơn kém nhau 2 đv => ko tìm đc

duyệt đi

14 tháng 3 2018

 Đây là cách làm

Ta có: \(\overline{6b}+\overline{b6}=60+b+10b+6=66+11b=k^2\)

Suy ra: \(=11\left(b+6\right)=k^2\)(b thuộc N)

Suy ra: \(b+6=11\Rightarrow b=5\)

Vậy số cần tìm là 65

Nhận xét:

+) Với x \(\geq\) 0 thì | x | + x = 2x

+) Với x < 0 thì | x | + x = 0

Do đó : | x | + x luôn là số chẵn với mọi x \(\in \) Z

Áp dụng nhận xét trên thì :

| n - 2016 | + n - 2016 là số chẵn với n - 2016 \(\in \) Z 

\(\implies\) 2m + 2015 là số chẵn 

\(\implies\) 2m là số lẻ

\(\implies\) m = 0

Khi đó:

| n - 2016 | + n - 2016 = 2016

+) Nếu n < 2016 ta được:

 - ( n - 2016 ) + n - 2016 =2016

\(\implies\) 0 = 2016

\(\implies\) vô lí 

\(\implies\) loại 

+) Nếu n \(\geq\)  2016 ta được :

( n - 2016 ) + n - 2016 = 2016

\(\implies\) n - 2016 + n - 2016 = 2016

\(\implies\) 2n - 2 . 2016 = 2016

​​\(\implies\)​ 2 ( n - 2016 ) = 2016

\(\implies\) n - 2016 = 2016 : 2

\(\implies\) n - 2016 = 1008

\(\implies\) n = 1008 + 2016

\(\implies\) n = 3024 

\(\implies\)  thỏa mãn 

Vậy ( m ; n ) \(\in \) { ( 0 ; 3024 ) }

22 tháng 8 2015

Toán lớp 6Phân tích thành thừa số nguyên tố

Đinh Tuấn Việt 20/05/2015 lúc 22:51

Theo đề bài ta có: 

 a = p1. p2n $\Rightarrow$⇒ a3 = p13m . p23n.

Số ước của a3 là (3m + 1).(3n + 1) = 40 (ước)

$\Rightarrow$⇒ m = 1 ; n = 3 hoặc m = 3 ; n = 1

Số a2 = p12m . p22n có số ước là [(2m + 1) . (2n + 1)] (ước)

-Với m = 1 ; n = 3 thì a2 có (2.1 + 1) . (2.3 + 1) = 3 . 7 = 21 (ước)

-Với m = 3 ; n = 1 thì a2 có (2.3 + 1) . (2.1 + 1) = 7 . 3 = 21 (ước)

                                                   Vậy a2 có 21 ước số.

 Đúng 4 Yêu Chi Pu đã chọn câu trả lời này.

nguyên 24/05/2015 lúc 16:50

Theo đề bài ta có: 

 a = p1. p2n $$

 a3 = p13m . p23n.

Số ước của a3 là (3m + 1).(3n + 1) = 40 (ước)

$$

 m = 1 ; n = 3 hoặc m = 3 ; n = 1

Số a2 = p12m . p22n có số ước là [(2m + 1) . (2n + 1)] (ước)

-Với m = 1 ; n = 3 thì a2 có (2.1 + 1) . (2.3 + 1) = 3 . 7 = 21 (ước)

-Với m = 3 ; n = 1 thì a2 có (2.3 + 1) . (2.1 + 1) = 7 . 3 = 21 (ước)

                                                   Vậy a2 có 21 ước số.

 Đúng 0

Captain America

22 tháng 8 2015

Có 21 ước