Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Nguyễn Lịch Tiểu - Toán lớp 6 - Học toán với OnlineMath
Em tham khảo tại link trên nhé.
Các n thỏa mãn\(\hept{\begin{cases}n\inℤ\\n>1\end{cases}}\)
bởi \(A=\frac{2\sqrt{n-1}}{\sqrt{n-1}}=2\)không phụ thuộc vào giá trị của biến nên chỉ cần điều kiện xác định của phân thức và căn bậc hai thôi.
Ta có : p + 1 và p - 1 hơn kém nhau 2 đơn vị. Vậy p = 12
Mjk ko chắc
Ta có p - 1 & p + 1 hơn kém nhau 2 đv => ko tìm đc
duyệt đi
Đây là cách làm
Ta có: \(\overline{6b}+\overline{b6}=60+b+10b+6=66+11b=k^2\)
Suy ra: \(=11\left(b+6\right)=k^2\)(b thuộc N)
Suy ra: \(b+6=11\Rightarrow b=5\)
Vậy số cần tìm là 65
Nhận xét:
+) Với x \(\geq\) 0 thì | x | + x = 2x
+) Với x < 0 thì | x | + x = 0
Do đó : | x | + x luôn là số chẵn với mọi x \(\in \) Z
Áp dụng nhận xét trên thì :
| n - 2016 | + n - 2016 là số chẵn với n - 2016 \(\in \) Z
\(\implies\) 2m + 2015 là số chẵn
\(\implies\) 2m là số lẻ
\(\implies\) m = 0
Khi đó:
| n - 2016 | + n - 2016 = 2016
+) Nếu n < 2016 ta được:
- ( n - 2016 ) + n - 2016 =2016
\(\implies\) 0 = 2016
\(\implies\) vô lí
\(\implies\) loại
+) Nếu n \(\geq\) 2016 ta được :
( n - 2016 ) + n - 2016 = 2016
\(\implies\) n - 2016 + n - 2016 = 2016
\(\implies\) 2n - 2 . 2016 = 2016
\(\implies\) 2 ( n - 2016 ) = 2016
\(\implies\) n - 2016 = 2016 : 2
\(\implies\) n - 2016 = 1008
\(\implies\) n = 1008 + 2016
\(\implies\) n = 3024
\(\implies\) thỏa mãn
Vậy ( m ; n ) \(\in \) { ( 0 ; 3024 ) }
Toán lớp 6Phân tích thành thừa số nguyên tố
Đinh Tuấn Việt 20/05/2015 lúc 22:51
Theo đề bài ta có:
a = p1m . p2n $\Rightarrow$⇒ a3 = p13m . p23n.
Số ước của a3 là (3m + 1).(3n + 1) = 40 (ước)
$\Rightarrow$⇒ m = 1 ; n = 3 hoặc m = 3 ; n = 1
Số a2 = p12m . p22n có số ước là [(2m + 1) . (2n + 1)] (ước)
-Với m = 1 ; n = 3 thì a2 có (2.1 + 1) . (2.3 + 1) = 3 . 7 = 21 (ước)
-Với m = 3 ; n = 1 thì a2 có (2.3 + 1) . (2.1 + 1) = 7 . 3 = 21 (ước)
Vậy a2 có 21 ước số.
Đúng 4 Yêu Chi Pu đã chọn câu trả lời này.
nguyên 24/05/2015 lúc 16:50
Theo đề bài ta có:
a = p1m . p2n $$
a3 = p13m . p23n.
Số ước của a3 là (3m + 1).(3n + 1) = 40 (ước)
$$
m = 1 ; n = 3 hoặc m = 3 ; n = 1
Số a2 = p12m . p22n có số ước là [(2m + 1) . (2n + 1)] (ước)
-Với m = 1 ; n = 3 thì a2 có (2.1 + 1) . (2.3 + 1) = 3 . 7 = 21 (ước)
-Với m = 3 ; n = 1 thì a2 có (2.3 + 1) . (2.1 + 1) = 7 . 3 = 21 (ước)
Vậy a2 có 21 ước số.
Đúng 0
Captain America
ok đợi mk soạn
Ta biết rằng một số tự nhiên n là bình phương của một số tự nhiên khi và chỉ khi tất cả các ước số nguyên tố của n có bậc chia hết cho 2.
Trong trường hợp này, ta cần tìm các số nguyên tố p sao cho 1 + p + p^2 + p^3 + p^4 là bình phương của một số tự nhiên.
Ta có thể viết lại biểu thức trên thành một bình phương như sau: a^2 = 1 + p + p^2 + p^3 + p^4.
Thông thường, khi giải các bài toán như vậy thì ta sẽ thử nghiệm từng giá trị của p để xem liệu có tồn tại số nguyên a thỏa mãn hay không.
1. Với p = 2:
a^2 = 1 + 2 + 2^2 + 2^3 + 2^4 = 1 + 2 + 4 + 8 + 16 = 31
Ta thấy rằng 31 không phải là bình phương của một số tự nhiên.
2. Với p = 3:
a^2 = 1 + 3 + 3^2 + 3^3 + 3^4 = 1 + 3 + 9 + 27 + 81 = 121
Ta thấy rằng 121 là bình phương của 11^2.
Vậy, số nguyên tố p = 3 thỏa mãn điều kiện đã cho và tạo ra một bình phương của một số tự nhiên.