K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 11

Hiện nay bố mang bẩy tuổi biết tuổi con sang năm bằng phần bốn tuổi bố năm ngoái hỏi mấy năm nữa thì tổng số tuổi hai bố con bằng năm mốt tuổi

10 tháng 11

Hiện nay bố 37 tuổi biết tuổi con sang năm bằng một phần bốn tuổi bố năm ngoái hỏi mấy năm nữa thì tổng số tuổi hai bố con bằng năm mốt tuổi

9 tháng 9 2023

a) Do tam giác AEB vuông cân tại A nên \(\left\{{}\begin{matrix}\widehat{EAB}=90^o\\AE=AB\end{matrix}\right.\)

Ta thấy \(\widehat{MEA}=\widehat{BAH}\) vì chúng cùng phụ với \(\widehat{EAM}\)

Xét 2 tam giác HAB vuông tại H và MEA vuông tại M, ta có:

\(AE=AB\left(cmt\right),\widehat{MEA}=\widehat{BAH}\left(cmt\right)\)

\(\Rightarrow\Delta HAB=\Delta MEA\left(ch-gn\right)\) \(\Rightarrow AH=ME\)     (1)

Tương tự, ta cũng có \(\Delta HAC=\Delta NFA\Rightarrow HC=AN\)     (2)

Từ (1) và (2) suy ra \(EM+HC=AH+AN\) hay \(EM+HC=HN\) (đpcm)

b) Từ \(\Delta HAC=\Delta NFA\Rightarrow AH=NF\)

Từ đó suy ra \(ME=NF\left(=AH\right)\)

Xét tam giác MNE và NMF, ta có:

\(ME=NF\left(cmt\right),\widehat{EMN}=\widehat{FNM}\left(=90^o\right)\), MN là cạnh chung.

\(\Rightarrow\Delta MNE=\Delta NMF\left(c.g.c\right)\)

\(\Rightarrow\widehat{ENM}=\widehat{FMN}\) \(\Rightarrow\) EN//FM (2 góc so le trong bằng nhau)

Ta có đpcm.

28 tháng 2 2020

a) Xét ∆AHB,∆EMA có :
^AHB = ^EMA = 90o
AB = AE (gt)

Do đó : ∆AHB = ∆EMA (ch-gn)
b) ∆AHB = ∆EMA (ch-gn)

=> EM = AH (1)
Cmtt ta cũng có : ∆AHC = ∆FNA (Ch-Gn)
=> HC = NA (2)
Từ (1)(2) => EM + HC = AH + NA
              => EM + HC = NH (A nằm giữa H,N)



d) Có : EM _|_ AH
            FN _|_ AH
=> EM // FN

11 tháng 1 2021

sai rui en//fm co ma

BÀI 1: Cho ∆ABC nhọn. Vẽ về phía ngoài ∆ABC các ∆ đều ABD và ACE. Gọi M là giao điểm của BE và CD. Chứng minh rằng:a) ∆ABE = ∆ADC b) Góc BMC = 120oBài 2: Cho tam giác ABC có ba góc nhọn, đường cao AH. ở miền ngoài của tam giác ABC ta vẽ các tam giác vuông cân ABE và ACF đều nhận A làm đỉnh góc vuông. Kẻ EM, FN cùng vuông góc với AH (M, N thuộc AH).a) Chứng minh: EM + HC = NH.b) Chứng minh: EN // FM.Bài 3:Cho...
Đọc tiếp

BÀI 1: Cho ∆ABC nhọn. Vẽ về phía ngoài ∆ABC các ∆ đều ABD và ACE. Gọi M là giao điểm của BE và CD. Chứng minh rằng:

a) ∆ABE = ∆ADC b) Góc BMC = 120o

Bài 2: Cho tam giác ABC có ba góc nhọn, đường cao AH. ở miền ngoài của tam giác ABC ta vẽ các tam giác vuông cân ABE và ACF đều nhận A làm đỉnh góc vuông. Kẻ EM, FN cùng vuông góc với AH (M, N thuộc AH).

a) Chứng minh: EM + HC = NH.

b) Chứng minh: EN // FM.

Bài 3:Cho cạnh hình vuông ABCD có độ dài là 1. Trên các cạnh AB, AD lấy các điểm P, Q sao cho chu vi DAPQ bằng 2.

Chứng minh rằng : Góc PCQ = 45o

Bài 4:Cho tam giác vuông cân ABC (AB = AC), tia phân giác của các góc B và C cắt AC và AB lần lượt tại E và D.

a) Chứng minh rằng: BE = CD; AD = AE.

b) Gọi I là giao điểm của BE và CD. AI cắt BC ở M, chứng minh rằng các ∆MAB; MAC là tam giác vuông cân.

c) Từ A và D vẽ các đường thẳng vuông góc với BE, các đường thẳng này cắt BC lần lượt ở K và H. Chứng minh rằng KH = KC.

Bài 5: Cho tam giác cân ABC (AB = AC ). Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB, AC lần lượt ở M, N. Chứng minh rằng:

a) DM = EN

b) Đường thẳng BC cắt MN tại trung điểm I của MN.

c) Đường thẳng vuông góc với MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC.

0
31 tháng 10 2023

Bài 1

\(3A=1.2.3+2.3.3+3.4.3+...+n\left(n+1\right)=\)

\(=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+n.\left(n+1\right)\left[\left(n+2\right)-\left(n-1\right)\right]=\)

\(=1.2.3-1.2.3+2.3.4-2.3.4+3.4.5-...-\left(n-1\right).n.\left(n+1\right)+n\left(n+1\right)\left(n+2\right)=\)

\(=n\left(n+1\right)\left(n+2\right)\Rightarrow A=\dfrac{n\left(n+1\right)\left(n+2\right)}{3}\)

Bài 2

B C A E F M N H

a/

Xét tg vuông AEM có

\(\widehat{EAM}+\widehat{AEM}=90^o\)

Ta có

\(\widehat{EAM}+\widehat{BAH}=\widehat{MAH}-\widehat{BAE}=180^o-90^o=90^o\)

\(\Rightarrow\widehat{AEM}=\widehat{BAH}\)

Xét tg vuông AEM và tg vuông BAH có

\(\widehat{AEM}=\widehat{BAH}\)

AE=AB (cạnh bên tg cân)

=> tg AEM = tg BAH (Hai tg vuông có cạnh huyền và góc nhọn tương ứng bằng nhau)

\(\Rightarrow EM=AH\) (1)

Xét tg vuông ANF có

\(\widehat{FAN}+\widehat{AFN}=90^o\)

Ta có

\(\widehat{FAN}+\widehat{CAH}=\widehat{NAH}-\widehat{FAC}=180^o-90^o=90^o\)

\(\Rightarrow\widehat{AFN}=\widehat{CAH}\)

Xét tg vuông AFN và tg vuông CAH có

\(\widehat{AFN}=\widehat{CAH}\)

AF=AC (cạnh bên tg cân)

=> tg AFN = tg CAH (Hai tg vuông có cạnh huyền và góc nhọn tương ứng bằng nhau) => HC=AN (2)

Từ (1) và (2) => EM+HC=AH+AN=NH

b/

Ta có

tg AFN = tg CAH (cmt) => FN=AH

Mà EM=AH (cmt)

=> EM=FN

\(EM\perp AH\left(gt\right);FN\perp AH\left(gt\right)\) => EM//FN (cùng vuông góc với AH)

=> ENFM là hình bình hành (Tứ giác có 1 cặp cạnh đối // và = nhau là hbh)

=> EN//FM (trong hbh (2 cạnh đối // với nhau)

 

 

1 tháng 7 2018

a.a. Ta có :

ΔAHB=ΔEMA(ch−gn)ΔAHB=ΔEMA(ch−gn)

AHBˆ=EMAˆ=(900)AHB^=EMA^=(900)

AB=AE(gt)AB=AE(gt)

ΔBAH=ΔAEMΔBAH=ΔAEM ( cùng phụ với ΔMAEΔMAE )

⇒EM=AH(1)⇒EM=AH(1)EM = AH (1)

Tương tự:

ΔAHC=ΔFNA(ch−gn)ΔAHC=ΔFNA(ch−gn)

⇒HC=NA(2)⇒HC=NA(2)

Từ (1)(1) và (2)(2) ⇒EM+HC=AH+NA=NH⇒EM+HC=AH+NA=NH

b) Từ ΔAHC=ΔFNAΔAHC=ΔFNA

⇒AH=NF(3)⇒AH=NF(3)

Từ (1)(1) và (3)(3)EM=MFEM=MF

Mặt khác : EM // NF ( cùng vuông góc với AH )

Ta suy ra : EN // FM

6 tháng 2 2020

B C A E F H M N

Xét ∆AHB,∆EMA có :

^AHB = ^EMA = 90o

AB = AE (gt)

^BAH = ^AEM (vì cùng phụ với ^MAE)

Do đó : ∆AHB = ∆EMA (Ch - Gn)

=> EM = AH (1)

Cmtt ta cũng có : ∆AHC = ∆FNA (Ch-Gn)

=> HC = NA (2)

Từ (1)(2) => EM + HC = AH + NA

              => EM + HC = NH (A nằm giữa H,N)

b) Có : EM _|_ AH

            FN _|_ AH

=> EM // FN

a:

góc BAE=góc BAC+góc CAE=góc BAC+60 độ

góc CAD=góc CAB+góc BAD=góc BAC+60 độ

=>góc BAE=góc CAD

Xét ΔABE và ΔADC có

AB=AD

góc BAE=góc DAC

AE=AC

=>ΔABE=ΔADC

b: ΔABE=ΔADC

=>góc ABE=góc ADC

=>góc ABM=góc ADM

Xét tứ giác ADBM có

góc ABM=góc ADM

=>ADBM là tứ giác nội tiếp

=>góc DMB=góc DAB=60 độ

góc DMB+góc BMC=180 độ(kề bù)

=>góc BMC=180-60=120 độ