Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Do tam giác AEB vuông cân tại A nên \(\left\{{}\begin{matrix}\widehat{EAB}=90^o\\AE=AB\end{matrix}\right.\)
Ta thấy \(\widehat{MEA}=\widehat{BAH}\) vì chúng cùng phụ với \(\widehat{EAM}\)
Xét 2 tam giác HAB vuông tại H và MEA vuông tại M, ta có:
\(AE=AB\left(cmt\right),\widehat{MEA}=\widehat{BAH}\left(cmt\right)\)
\(\Rightarrow\Delta HAB=\Delta MEA\left(ch-gn\right)\) \(\Rightarrow AH=ME\) (1)
Tương tự, ta cũng có \(\Delta HAC=\Delta NFA\Rightarrow HC=AN\) (2)
Từ (1) và (2) suy ra \(EM+HC=AH+AN\) hay \(EM+HC=HN\) (đpcm)
b) Từ \(\Delta HAC=\Delta NFA\Rightarrow AH=NF\)
Từ đó suy ra \(ME=NF\left(=AH\right)\)
Xét tam giác MNE và NMF, ta có:
\(ME=NF\left(cmt\right),\widehat{EMN}=\widehat{FNM}\left(=90^o\right)\), MN là cạnh chung.
\(\Rightarrow\Delta MNE=\Delta NMF\left(c.g.c\right)\)
\(\Rightarrow\widehat{ENM}=\widehat{FMN}\) \(\Rightarrow\) EN//FM (2 góc so le trong bằng nhau)
Ta có đpcm.
a) Xét ∆AHB,∆EMA có :
^AHB = ^EMA = 90o
AB = AE (gt)
Do đó : ∆AHB = ∆EMA (ch-gn)
b) ∆AHB = ∆EMA (ch-gn)
=> EM = AH (1)
Cmtt ta cũng có : ∆AHC = ∆FNA (Ch-Gn)
=> HC = NA (2)
Từ (1)(2) => EM + HC = AH + NA
=> EM + HC = NH (A nằm giữa H,N)
d) Có : EM _|_ AH
FN _|_ AH
=> EM // FN
Bài 1
\(3A=1.2.3+2.3.3+3.4.3+...+n\left(n+1\right)=\)
\(=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+n.\left(n+1\right)\left[\left(n+2\right)-\left(n-1\right)\right]=\)
\(=1.2.3-1.2.3+2.3.4-2.3.4+3.4.5-...-\left(n-1\right).n.\left(n+1\right)+n\left(n+1\right)\left(n+2\right)=\)
\(=n\left(n+1\right)\left(n+2\right)\Rightarrow A=\dfrac{n\left(n+1\right)\left(n+2\right)}{3}\)
Bài 2
a/
Xét tg vuông AEM có
\(\widehat{EAM}+\widehat{AEM}=90^o\)
Ta có
\(\widehat{EAM}+\widehat{BAH}=\widehat{MAH}-\widehat{BAE}=180^o-90^o=90^o\)
\(\Rightarrow\widehat{AEM}=\widehat{BAH}\)
Xét tg vuông AEM và tg vuông BAH có
\(\widehat{AEM}=\widehat{BAH}\)
AE=AB (cạnh bên tg cân)
=> tg AEM = tg BAH (Hai tg vuông có cạnh huyền và góc nhọn tương ứng bằng nhau)
\(\Rightarrow EM=AH\) (1)
Xét tg vuông ANF có
\(\widehat{FAN}+\widehat{AFN}=90^o\)
Ta có
\(\widehat{FAN}+\widehat{CAH}=\widehat{NAH}-\widehat{FAC}=180^o-90^o=90^o\)
\(\Rightarrow\widehat{AFN}=\widehat{CAH}\)
Xét tg vuông AFN và tg vuông CAH có
\(\widehat{AFN}=\widehat{CAH}\)
AF=AC (cạnh bên tg cân)
=> tg AFN = tg CAH (Hai tg vuông có cạnh huyền và góc nhọn tương ứng bằng nhau) => HC=AN (2)
Từ (1) và (2) => EM+HC=AH+AN=NH
b/
Ta có
tg AFN = tg CAH (cmt) => FN=AH
Mà EM=AH (cmt)
=> EM=FN
\(EM\perp AH\left(gt\right);FN\perp AH\left(gt\right)\) => EM//FN (cùng vuông góc với AH)
=> ENFM là hình bình hành (Tứ giác có 1 cặp cạnh đối // và = nhau là hbh)
=> EN//FM (trong hbh (2 cạnh đối // với nhau)
a.a. Ta có :
ΔAHB=ΔEMA(ch−gn)ΔAHB=ΔEMA(ch−gn)
AHBˆ=EMAˆ=(900)AHB^=EMA^=(900)
AB=AE(gt)AB=AE(gt)
ΔBAH=ΔAEMΔBAH=ΔAEM ( cùng phụ với ΔMAEΔMAE )
⇒EM=AH(1)⇒EM=AH(1)EM = AH (1)
Tương tự:
ΔAHC=ΔFNA(ch−gn)ΔAHC=ΔFNA(ch−gn)
⇒HC=NA(2)⇒HC=NA(2)
Từ (1)(1) và (2)(2) ⇒EM+HC=AH+NA=NH⇒EM+HC=AH+NA=NH
b) Từ ΔAHC=ΔFNAΔAHC=ΔFNA
⇒AH=NF(3)⇒AH=NF(3)
Từ (1)(1) và (3)(3)EM=MFEM=MF
Mặt khác : EM // NF ( cùng vuông góc với AH )
Ta suy ra : EN // FM
Xét ∆AHB,∆EMA có :
^AHB = ^EMA = 90o
AB = AE (gt)
^BAH = ^AEM (vì cùng phụ với ^MAE)
Do đó : ∆AHB = ∆EMA (Ch - Gn)
=> EM = AH (1)
Cmtt ta cũng có : ∆AHC = ∆FNA (Ch-Gn)
=> HC = NA (2)
Từ (1)(2) => EM + HC = AH + NA
=> EM + HC = NH (A nằm giữa H,N)
b) Có : EM _|_ AH
FN _|_ AH
=> EM // FN
a:
góc BAE=góc BAC+góc CAE=góc BAC+60 độ
góc CAD=góc CAB+góc BAD=góc BAC+60 độ
=>góc BAE=góc CAD
Xét ΔABE và ΔADC có
AB=AD
góc BAE=góc DAC
AE=AC
=>ΔABE=ΔADC
b: ΔABE=ΔADC
=>góc ABE=góc ADC
=>góc ABM=góc ADM
Xét tứ giác ADBM có
góc ABM=góc ADM
=>ADBM là tứ giác nội tiếp
=>góc DMB=góc DAB=60 độ
góc DMB+góc BMC=180 độ(kề bù)
=>góc BMC=180-60=120 độ
Hiện nay bố mang bẩy tuổi biết tuổi con sang năm bằng phần bốn tuổi bố năm ngoái hỏi mấy năm nữa thì tổng số tuổi hai bố con bằng năm mốt tuổi
Hiện nay bố 37 tuổi biết tuổi con sang năm bằng một phần bốn tuổi bố năm ngoái hỏi mấy năm nữa thì tổng số tuổi hai bố con bằng năm mốt tuổi