
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Áp dụng a /b > 1 => a/b > a+m/b+m (a;b;m thuộc N*)
Ta có:
\(\frac{100^{10}-1}{100^{10}-3}>\frac{100^{100}-1+2}{100^{10}-3+2}\)
\(>\frac{100^{100}+1}{100^{10}-1}\)

ta có :
\(25^{1008}=\left(5^2\right)^{1008}=5^{2.1008}=5^{2016}\)
mà \(5^{2017}>5^{2016}\)
\(\Rightarrow\)\(5^{2017}>\left(5^2\right)^{1008}\)
\(\Rightarrow\)\(5^{2017}>25^{1008}\)
có \(5^{2017}=\left(5^2\right)^{1008}\times5\)\(=25^{1008}\times5\)
mà \(=25^{1008}\times5\)> \(25^{1008}\)
nên \(5^{2017}>25^{1008}\)

2100và 1030
2100=210.10=(210)10=102410
1030=103.10=(103)10=100010
1024 > 1000
=>102410 > 100010
=>2100>1030

2100=(210)10=102410
1030=(103)10=100010
vì 1024>1000 nên 102410>100010
hay 2100>1030



Ta có :
A = 40010 = ( 202 )10 = 2020 < 10020 = B
=> A < B
\(10^{999}>10^{998}=\left(10^2\right)^{499}=100^{499}>99^{499}>99^{100}\)