K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(y^3-y=0\)

=>\(y\left(y^2-1\right)=0\)

=>y(y-1)(y+1)=0

=>\(\left[{}\begin{matrix}y=0\\y-1=0\\y+1=0\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}y=0\\y=-1\\y=1\end{matrix}\right.\)

6 tháng 11 2024

y.(3-1)=0

y.2=0

y   =0:2

y    =0

Vậy y=0

23 tháng 4 2021

\(x^2-2xy+y^2+3x-3y-4=0\)

\(\Leftrightarrow\left(x-y\right)^2+3\left(x-y\right)-4=0\)

\(\Leftrightarrow\left(x-y\right)\left(x-y+3\right)-4=0\)

Thay y = 3 vào biểu thức trên ta được : 

\(x\left(x-3\right)-4=0\)

\(\Leftrightarrow x^2-3x-4=0\Leftrightarrow\left(x-4\right)\left(x+1\right)=0\Leftrightarrow x=4;x=-1\)

Vậy với y = 3 thì x = 4 ; x = -1 

23 tháng 4 2021

Thay y = 3 vào bthuc ta được :

x2 - 6x + 9 + 3x - 9 - 4 = 0

<=> x2 - 3x - 4 = 0

<=> ( x + 1 )( x - 4 ) = 0

<=> x = -1 hoặc x = 4 

14 tháng 5 2018

\(x^2-\left(5+y\right)x+2+y=0\Leftrightarrow x^2-\left(5+y\right)x+5+y-1=2\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)-\left(y+5\right)\left(x-1\right)=2\)

\(\Leftrightarrow\left(x-1\right)\left(x-y-4\right)=2=1\cdot2=2\cdot1=\left(-1\right)\left(-2\right)=\left(-2\right)\left(-1\right)\)

Giải phương trình tích trên ta được 4 tập nghiệm là \(\left(x;y\right)\in\left\{\left(2;-4\right);\left(3;-2\right);\left(0;-2\right);\left(-1;-4\right)\right\}\) 

21 tháng 2 2019

Nghĩ ra rồi -_-

Phương trình trên có nghiệm khi và chỉ khi \(\Delta=\left(5+y\right)^2-4\left(2+y\right)\ge0\)

\(\Leftrightarrow y^2+6y+17\ge0\) (luôn đúng do VT >= 8 với mọi y)

Để phương trình có nghiệm nguyên thì \(\Delta\)là số chính phương.

Đặt \(y^2+6y+17=k^2\)

Suy ra \(\left(y+3\right)^2+8=k^2\) (\(k\inℕ\))

\(\Leftrightarrow\left(y+3\right)^2-k^2=8\)

\(\Leftrightarrow\left(y+3-k\right)\left(y+3+k\right)=8\)

Lập bảng ước số là ra.

23 tháng 6 2017

Ta có:

\(x^3+y^3-xy=7\)

\(\left(x+y\right)^3-3xy\left(x+y\right)-xy=7\)

Thay x+y = 3 ta dc:

\(3^3-9xy-xy=7\)

\(-10xy=-20\)

\(xy=2\)

Vậy, tập hợp x, y thoả mãn đaẻng thức là: {x,y thuộc R/xy=2}

22 tháng 11 2019

\(x^2+2y^2-3xy+2x-4y+3=0\)

\(\Leftrightarrow4x^2+8y^2-12xy+8x-16y+12=0\)

\(\Leftrightarrow\left(4x^2-12xy+9y^2\right)-y^2+8x-16y+12=0\)

\(\Leftrightarrow\left(2x-3y\right)^2+4\left(2x-3y\right)+4-\left(y^2-4y+4\right)+6=0\)

\(\Leftrightarrow\left(2x-3y+2\right)^2-\left(y-2\right)^2+6=0\)

\(\Leftrightarrow\left(2x-3y+2-y+2\right)\left(2x-3y+2+y-2\right)=-6\)

\(\Leftrightarrow\left(2x-4y+4\right)\left(2x-2y\right)=-6\)

\(\Leftrightarrow\left(x-2y+2\right)\left(x-y\right)=-\frac{3}{2}\)

Đến đây ta thấy vô lý

P/S:is that true ?

13 tháng 2 2022

=-12 mà CTV