Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mình biết câu b
gọi m=2014.2015.2016.2017.2018+10
ta thấy m có chữ số tận cùng là 0
vì thế nên m chia hết cho m,1,2 và 5
vậy m là hợp số
mình có một câu hỏi minh vẫn đang thắc mắc câu hỏi đó trên trang của minh có đấy
kết bạn vs mình luôn nha!
1)
+)Xét trường hợp p=2 =>p+6= 8 là hợp số (trái với giả thiết)
+) Xét trường hợp p=3 =>p+12=15 là hợp số (trái với giả thiết)
+)Xét trường hợp p>3 =>p có một trong hai dạng :3k+1 ; 3k+2
Nếu p= 3k+1 =>p+8=3k+8+1=3k+9 chia hết cho 3
=>p+8 là hợp số (trái với giả thiết )
Vậy p phải có dạng là 3k+2
Nếu p=3k+2 =>p+4 = 3k+2+4 = 3k+6 =3.(k+2)=>p+4 chia hết cho 3
=>p+4 là hợp số (đpcm)
Chú ý rằng, phân số tối giản là phân số mà tử và mẫu chỉ có ước chung là ±1.
a) Gọi d là ước chung của n + 7 và n + 6. Ta chứng minh d = ±1 bằng cách xét hiệu (n + 7) - (n + 6) chia hết cho d.
b) Gọi d là ước chung của 3n + 2 và n +1. Ta chứng minh d = ±1 bằng cách xét hiệu (3n + 2) - 3.(n +1) chia hết cho d.
a) abcabc=abc.1000+abc=1001.abc=7.143.abc Suy ra abcabc+7=7.(143.abc+1) chia hết cho 7, suy ra dpcm
b) abcabc=1000.abc+abc=1001.abc=13.77.abc, suy ra abcabc+39=13.(77.abc+3) chia hết cho 13, suy ra dpcm
c) abcabc=1000.abc+abc=1001.abc=11.91.abc; suy ra abcabc+33=11.(91.abc+3) chia hết cho 11; suy ra dpcm.
Bài 2:
29 = 29
⇒ 29.n = 29.n
⇒ 29.n \(\in\) p ⇔ n = 1
Vậy n = 1
b) Ta có
\(\frac{6n+3}{3n+6}=\frac{6n+12-9}{3n+6}=\frac{2.\left(3n+6\right)-9}{3n+6}=2-\frac{9}{3n+6}\)
3 n + 6 là ước nguyên của 9
\(3n+6=1\Rightarrow n=-\frac{5}{3}\)(loại)
\(3n+6=3\Rightarrow n=-1\)( chọn )
\(3n+6=9\Rightarrow n=1\)( chọn )
\(3n+6=-1\Rightarrow n=-\frac{7}{3}\)( loại )
\(3n+6=-3\Rightarrow n=-3\)( chọn )
\(3n+6=-9\Rightarrow n=-5\)( chọn )
KL : \(n\in\){ 1; -1; -3; -5 }
Ai thấy đúng thì ủng hộ nha!!
Nếu a chia hết thì cách giải là a chia hết 1.2.....50 suy ra a chia hết cho 2,cho 3,.....,cho 50
suy ra a+2 là hợp số a chia hết 2,2chia hết cho 2
a+3 là hợp số a chia hết cho 3, 3 chia hết cho 3
.....................................................................
a+ 50 là hợp số a chia hết cho 50 , 50 chia hết cho 50
Câu 9:
Vì 2015;1020 đều chia hết cho 5
nên 2015+1020 là hợp số
a.
Do `586078` có tận cùng là 8, là chữ số chẵn, nên `586078` là số chẵn lớn hơn 2
Do đó `586078` chia hết cho 2
Nên `586078` là hợp số
b.
Do `10` là số chẵn nên \(10^{20}\) là số chẵn
Đồng thời `6` cũng là số chẵn
Suy ra \(10^{20}+6\) là số chẵn lớn hơn 2
Suy ra \(10^{20}+6\) là hợp số
Là số chẵn > 2 ⇒ Chia hết cho 2; 1 và chính nó ⇒ 586078; (1020 + 6) là hợp số.