Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`|2x+1|=|3x+5|`
`<=> [(2x+1=3x+5),(2x+1=-(3x+5):}`
`<=> [(x=-4),(x=-6/5):}`
.
`|2x-1|=|-5x-2|`
`<=> [(2x-1=-5x-2),(2x-1=-(-5x-2):}`
`<=> [(x=-1/7),(x=-1):}`
Ơ shao toàn lỗi tke nhỉ ._?
\(\left[{}\begin{matrix}2x+1=3x+5\\2x+1=-\left(3x+5\right)\end{matrix}\right.\)
\(\left[{}\begin{matrix}2x-1=-5x-2\\2x-1=-\left(5x-2\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4xy-2x+2y-1=4xy-x+4y-1\\6xy+2x-3y-1=6xy+6x-4y-4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+2y=0\\4x-y=3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\frac{2}{3}\\y=-\frac{1}{3}\end{matrix}\right.\)
a.
\(\left\{{}\begin{matrix}\left(x-1\right)^2-\left(y+1\right)^2=0\\x+3y-5=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1-y-1\right)\left(x-1+y+1\right)=0\\x+3y-5=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-y-2\right)\left(x+y\right)=0\\x+3y-5=0\end{matrix}\right.\)
TH1: \(\left\{{}\begin{matrix}x-y-2=0\\x+3y-5=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{11}{4}\\y=\dfrac{3}{4}\end{matrix}\right.\)
TH2: \(\left\{{}\begin{matrix}x+y=0\\x+3y-5=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{5}{2}\\y=\dfrac{5}{2}\end{matrix}\right.\)
b.
\(\left\{{}\begin{matrix}xy-2x-y+2=0\\3x+y=8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\left(y-2\right)-\left(y-2\right)=0\\3x+y=8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)\left(y-2\right)=0\\3x+y=8\end{matrix}\right.\)
TH1:
\(\left\{{}\begin{matrix}x-1=0\\3x+y=8\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=5\end{matrix}\right.\)
TH2:
\(\left\{{}\begin{matrix}y-2=0\\3x+y=8\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=2\end{matrix}\right.\)
Đặt \(2x^2-3x+1=t\Rightarrow2x^2-3x-9=t-10\)
Phương trình trở thành:
\(t\left(t-10\right)=-9\Leftrightarrow t^2-10t+9=0\Rightarrow\left[{}\begin{matrix}t=1\\t=9\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x^2-3x+1=1\\2x^2-3x+1=9\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x^2-3x=0\\2x^2-3x-8=0\end{matrix}\right.\)
\(\Leftrightarrow...\) (bấm máy)
a) Ta có: \(\left\{{}\begin{matrix}3x-2\left|y\right|=9\\2x+3\left|y\right|=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}6x-4\left|y\right|=18\\6x+9\left|y\right|=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-13\left|y\right|=15\\3x-2\left|y\right|=9\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left|y\right|=\dfrac{-15}{13}\\3x-2\left|y\right|=9\end{matrix}\right.\Leftrightarrow\)Phương trình vô nghiệmVậy: \(S=\varnothing\)
$\begin{cases}3x-2|y|=9\\2x+3|y|=1\\\end{cases}$
`<=>` $\begin{cases}6x-4|y|=18\\6x+9|y|=3\\\end{cases}$
`<=>` $\begin{cases}13|y|=-15(loại)\\|3x|-2|y|=9\\\end{cases}$
Vậy HPT vô nghiệm
\(\left(3x-2\right)\left(2x+1\right)=\left(2x+1\right)^2\)
=>\(\left(3x-2\right)\left(2x+1\right)-\left(2x+1\right)^2=0\)
=>\(\left(2x+1\right)\left(3x-2-2x-1\right)=0\)
=>(2x+1)(x-3)=0
=>\(\left[{}\begin{matrix}2x+1=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=3\end{matrix}\right.\)
x = 3
Thay x vào ta có:
(3. 3- 2)(2. 3+ 1)= (2. 2+ 1)2
7 . 7 = 72