K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2024

A B C H M

a/

\(\sin C=\dfrac{AB}{BC}=\dfrac{3}{6}=\dfrac{1}{2}\Rightarrow C=30^o\Rightarrow B=60^o\)

\(AC=\sqrt{BC^2-AB^2}=\sqrt{6^2-3^2}=\sqrt{27}=3\sqrt{3}\)

b/

\(AM=MB=MC=\dfrac{BC}{2}=\dfrac{6}{2}=3\) (trong tg vuông trung tuyến thuộc cạnh huyền bằng nửa cạnh huyền)

Ta có \(\widehat{BAH}=C=30^o\) (cùng phụ với B)

Xét tg vuông ABH có

\(BH=\dfrac{AB}{2}=\dfrac{3}{2}=1,5\) (trong tg vuông cạnh đối diện góc \(30^o\) thì bằng nửa cạnh huyền)

\(\Rightarrow CH=BC-BH=6-1,5=4,5\)

\(\Rightarrow AH^2=BH.CH\) (trong tg vuông bình phương đường cao hạ từ đỉnh góc vuông xuống cạnh huyền bằng tích giữa hình chiếu của 2 cạnh góc vuông trên cạnh huyền)

\(\Rightarrow AH=\sqrt{1,5.4,5}=\sqrt{6,75}\)

26 tháng 10 2024

a: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AC=\sqrt{6^2-3^2}=3\sqrt{3}\left(cm\right)\)

Xét ΔABC vuông tại A có \(sinC=\dfrac{AB}{BC}=\dfrac{3}{6}=\dfrac{1}{2}\)

nên \(\widehat{C}=30^0\)

Xét ΔABC vuông tại A có \(\widehat{B}+\widehat{C}=90^0\)

=>\(\widehat{B}=90^0-30^0=60^0\)

b: Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

=>\(AH\cdot6=3\cdot3\sqrt{3}=9\sqrt{3}\)

=>\(AH=\dfrac{9\sqrt{3}}{6}=\dfrac{3\sqrt{3}}{2}\left(cm\right)\)

ΔABC vuông tại A

mà AM là đường trung tuyến

nên \(AM=\dfrac{BC}{2}=\dfrac{6}{2}=3\left(cm\right)\)

Xét ΔBAC có AM là đường trung tuyến

nên \(S_{ABM}=\dfrac{1}{2}\cdot S_{ABC}=\dfrac{1}{2}\cdot\dfrac{9\sqrt{3}}{2}=\dfrac{9\sqrt{3}}{4}\left(cm^2\right)\)

a: Ta có: ΔABC vuông tại A

nên \(\widehat{B}+\widehat{C}=90^0\)

hay \(\widehat{C}=60^0\)

Xét ΔABC vuông tại A có 

\(AC=AB\cdot\tan30^0\)

\(=2\sqrt{3}\left(cm\right)\)

\(\Leftrightarrow BC=4\sqrt{3}\left(cm\right)\)

:< giải hộ mình với ~

\(HC=\dfrac{3^2}{4}=2.25\left(cm\right)\)

BC=HB+HC=6,25(cm)

AM=BC/2=3,125(cm)

\(AB=\sqrt{4\cdot6.25}=5\left(cm\right)\)

\(AC=\sqrt{6.25^2-5^2}=3.75\left(cm\right)\)

15 tháng 5 2022

+ ) áp dụng định lí Pytago trong tam giác vuông \(ABH\) vuông tại \(H\) , ta có :

\(AB^2=AH^2+HB^2=3^2+4^2=25\Rightarrow AB=5\left(cm\right)\)

+ ) áp dụng hệ thức về cạnh và đường cao trong tam giác vuông \(ABC\) với \(AH\) là đường cao , ta có :

\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)

\(\Leftrightarrow\) \(\dfrac{1}{AC^2}=\dfrac{1}{AH^2}-\dfrac{1}{AB^2}\) 

\(\Leftrightarrow\) \(\dfrac{1}{AC^2}=\dfrac{1}{3^2}-\dfrac{1}{5^2}=\dfrac{16}{225}\) 

\(\Rightarrow AC=\dfrac{15}{4}\left(cm\right)\)

+ ) áp dụng định lí Pytago trong tam giác vuông \(ABC\) vuông tại \(A\) , ta có :

\(BC^2=AB^2+AC^2=5^2+\left(\dfrac{15}{4}\right)^2=\dfrac{625}{16}\)

\(\Rightarrow BC=\dfrac{25}{4}\left(cm\right)\)

+ ) tam giác \(ABC\) vuông tại \(A\) có trung tuyến \(AM\) nên ta có :

\(AM=\dfrac{1}{2}BC=\dfrac{25}{8}\left(cm\right)\)

 

 

23 tháng 5 2021

A B C H M

Xét tam giác ABH vuông tại H, ta có:

\(AB^2=AH^2+BH^2\)\(=3^2+4^2=25\)

\(\Rightarrow AB=5\left(cm\right)\)

Xét tam giác ABC vuông tại A, theo hệ thức lượng ta có:

\(AH^2=AB\cdot AC\Rightarrow AC=\dfrac{AH^2}{AB}=\dfrac{3^2}{5}=1,8\left(cm\right)\)

Do đó:\(BC=\sqrt{AB^2+AC^2}=\sqrt{5^2+1,8^2}\simeq5,3\left(cm\right)\)

AM là đường trung tuyến trong tam giác vuông ABC

=> AM=\(\dfrac{1}{2}\) BC= 2,65 \(\left(cm\right)\)

26 tháng 2 2017

a ,   Δ A B C ,   A ⏜ = 90 0 , A H ⊥ B C g t ⇒ A H = B H . C H = 4.9 = 6 c m Δ A B H ,   H ⏜ = 90 0   g t ⇒ tan B = A H B H = 6 4 ⇒ B ⏜ ≈ 56 , 3 0 b ,   Δ A B C ,   A ⏜ = 90 0 , M B = M C g t ⇒ A M = 1 2 B C = 1 2 .13 = 6 , 5 c m S Δ A H M = 1 2 M H . A H = 1 2 .2 , 5.6 = 7 , 5 c m 2

24 tháng 10 2019

a)xét \(\Delta\)ABC vuông tại A có

\(\widehat{B}+\widehat{C}=90'\Rightarrow\widehat{C}=90'-30'=60'\)

\(\sin C=\frac{AB}{BC}\Rightarrow BC=\frac{AB}{\sin B}=\frac{6}{\sin30'}=12\left(cm\right)\)

\(\tan B=\frac{AC}{AB}\Rightarrow AC=AB.\tan B=6.\tan30'=2\sqrt{3}\left(cm\right)\)

b)Xét \(\Delta ABC\left(\widehat{BAC}=90'\right)AHvuôngócBC\)

\(AB^2=BC.HB\Rightarrow HB=\frac{AB^2}{BC}=\frac{6^2}{12}=3cm\)

\(AH.BC=AB.AC\)

\(\Rightarrow AH=\frac{AB.AC}{BC}=6.2\sqrt{3}=12\sqrt{3}cm\)(1)

VÌ AM LÀ ĐƯỜNG TRUNG TUYẾN CỦA TG ABC NÊN

\(MB=MC=\frac{BC}{2}=\frac{12}{2}=6cm\)

\(MB=MH+HB\)

\(\Rightarrow MH=MB-HB=6-3=3cm\)(2)

TỪ (1)và (2) SUY RA

\(S\Delta AHM=\frac{1}{2}AH.HM=\frac{1}{2}.12\sqrt{3}.3=18\sqrt{3}\approx31.18\left(cm^2\right)\left(do\Delta AHMvuôngtạiH\right)\)