K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2018

một bài bđt khó nha    cho a,b,c là các số dương  thỏa mãn a+b+c=3. Tìm giá trị nhỏ nhất của biểu thức sau:

                                  P=1/1+a^2  +1/1+b^2  +1/1+c^2

23 tháng 10 2017

Nếu ol thì tham khảo nah nguoiemtinhthong.

1.1

2x2+5x−1=7x3−1−−−−−√2x2+5x−1=7x3−1

⇔2(x2+x+1)+3(x−1)−7(x−1)(x2+x+1)−−−−−−−−−−−−−−−√(1)⇔2(x2+x+1)+3(x−1)−7(x−1)(x2+x+1)(1)

Đặt a=x−1−−−−−√;b=x2+x+1−−−−−−−−√;a≥0;b>0a=x−1;b=x2+x+1;a≥0;b>0

pt (1) trở thành 3a2+2b2−7ab=03a2+2b2−7ab=0

a=2ba=2b v a=13ba=13b

Các bạn tự giải quyết tiếp nhé.

1.2

TXĐ D=[1;+∞)D=[1;+∞)

đặt a=x−1−−−−−√4;b=x+1−−−−−√4;a,b≥0a=x−14;b=x+14;a,b≥0

pt (2) trở thành 3a2+2b2−5ab=03a2+2b2−5ab=0

⇔a=b⇔a=b v a=23ba=23b

...

1.3

D=[3;+∞)D=[3;+∞)

Đặt a=x2+4x−5−−−−−−−−−√;b=x−3−−−−−√;a,b≥0a=x2+4x−5;b=x−3;a,b≥0

pt (3) trở thành 3a+b=11a2−19b2−−−−−−−−−√3a+b=11a2−19b2

⇔2a2−6ab−20b2=0⇔2a2−6ab−20b2=0

⇒a=5b⇒a=5b
...

1.4

ĐK

⇔2x2−2x+2=3(x−2)x(x+1)−−−−−−−−−−−−√2x2−2x+2=3(x−2)x(x+1)

⇔(x2−2x)+2(x+1)=3(x2−2x)(x+1)−−−−−−−−−−−−−√2(x2−2x)+2(x+1)=3(x2−2x)(x+1)

Đặt x2−2x−−−−−−√=ax2−2x=a; x+1−−−−−√=bx+1=b (a;b\geq0)

⇔2a2+2b2=3ab

1.5

Đặt 4x2−4x−10=t4x2−4x−10=t (t \geq 0)

⇔t=t+4x2−2x−−−−−−−−−−√t=t+4x2−2x

⇔t2−t−4x2+2x=0t2−t−4x2+2x=0

Δ=1−4(2x−4x2)=(4x−1)2Δ=1−4(2x−4x2)=(4x−1)2

⇒t=1−2xt=1−2x hoặc t=2xt=2x

23 tháng 10 2017

1.1

2.2+5.-1=7.3-1-----v2.2+5.-1=7.3-1

2(.2+x+1)+3(x-1)

3a+b=11a2-19b2

tóm tắt

3 tháng 12 2021

Answer:

Bài 1:

\(\left(1+2x\right)^2+2.\left(1+2x\right).\left(x-1\right)+\left(x-1\right)^2\)

\(=[\left(1+2x\right)+\left(x-1\right)]^2\)

\(=[1+2x+x-1]^2\)

\(=[\left(1-1\right)+\left(2x+x\right)]^2\)

\(=9x^2\)

Bài 2:

\(x^2-6x+7\)

\(=x^2+x-7x-7\)

\(=x.\left(x+1\right)-7.\left(x+1\right)\)

\(=\left(x+1\right).\left(x-7\right)\)

Bài 3:

\(47^2-47.47+37^2\)

\(=47^2-47^2+37^2\)

\(=0+37^2\)

\(=1369\)

28 tháng 7 2018

Bài 1 :

(3xy-1/2).(4x2y-6xy2+1) = 12x3y- 18x2y3 + 3xy - 2x2y + 3xy2 - 1/2 

28 tháng 7 2018

Bài 4:

\(4x^2+8x+7=\left(4x^2+8x+4\right)+3=\left(2x+2\right)^2+3\ge3>0 \)

24 tháng 10 2016

Bài 1 :

\(\left(2x-1\right)^2+\left(x+2\right)^2\)

\(\Leftrightarrow4x^2-4x+1+x^2+4x+4\)

\(\Leftrightarrow5x^2+5\)

Bài 2 :

\(B=4x-x^2\)

\(B=-\left(x^2-4x\right)\)

\(B=-\left(x^2-2.2x+4-4\right)\)

\(B=-\left(x-2\right)^2+4\)

Ta có : \(-\left(x-2\right)^2\le0\)

\(\Rightarrow-\left(x-2\right)^2+4\le4\)

Dấu " = " xảy ra khi và chỉ khi \(x-2=0\)

\(\Leftrightarrow x=2\)

Vậy \(Max_B=4\Leftrightarrow x=2\).

4 tháng 7 2016

B3:\(\Rightarrow90.10^n-10^n.10^2+10^n.10-20\Rightarrow10^n.\left(90-10^2\right)+10^n.10-20\)

\(\Rightarrow10^n.\left(90-100\right)+10^n.10-20\Rightarrow-10.10^n+10^n.10-20\Rightarrow-20\)

4 tháng 7 2016

\(A=-\left(x^2-x+5\right)=-\left(x^2-2.\frac{1}{2}x+\frac{1}{4}+\frac{19}{4}\right)=-\left[\left(x-\frac{1}{2}\right)^2+\frac{19}{4}\right]\)

\(=-\left(x-\frac{1}{2}\right)^2-\frac{19}{4}\le-\frac{19}{4}\)

Vậy \(A_{min}=-\frac{19}{4}\Leftrightarrow x-\frac{1}{2}=0\Rightarrow x=\frac{1}{2}\)