K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2024

Giả sử P là 5

5+8=13 và 13 là số nguyên tố nên ta có thể lấy P=5

P+100= hợp số

5+100=105= hợp số

Vậy P có thể bằng 5

1 . p =3

2. chịu

Hk tốt

12 tháng 11 2018

Chứng minh

b) Thiếu đề với p>3. nhé!. Vì p=3 thì p+100=103 là số nguyên tố

p là số nguyên tố nên  có dạng 3k+1, 3k+2, thuộc N

Với p=3k+1 => p+8=3k+9 \(⋮3\)loại vì p+8 là số nguyen tố

Với p=3k+2=> p+100=3k+2+100=3k+102 =3(k+34) chia hết cho 3

=> p+100 là hợp số.

15 tháng 11 2018

Bài 1:

+Nếu p = 2 ⇒⇒ p + 2 = 4 (loại)
+Nếu p = 3 ⇒⇒ p + 6 = 9 (loại)
+Nếu p = 5 ⇒⇒ p + 2 = 7, p + 6 = 11, p + 8 = 13, p + 12 = 17, p + 14 = 19 (thỏa mãn)
+Nếu p > 5, ta có vì p là số nguyên tố nên ⇒⇒ p không chia hết cho 5 ⇒⇒ p = 5k+1, p = 5k+2, p = 5k+3, p = 5k+4
-Với p = 5k + 1, ta có: p + 14 = 5k + 15 = 5 ( k+3) ⋮⋮ 5 (loại)
-Với p = 5k + 2, ta có: p + 8 = 5k + 10 = 5 ( k+2 ) ⋮⋮ 5 (loại)
-Với p = 5k + 3, ta có: p + 12 = 5k + 15 = 5 ( k+3) ⋮⋮ 5 (loại)
-Với p = 5k + 4, ta có: p + 6 = 5k + 10 = 5 ( k+2) ⋮⋮ 5 (loại)
⇒⇒ không có giá trị nguyên tố p lớn hơn 5 thỏa mãn
Vậy p = 5 là giá trị cần tìm

15 tháng 11 2018

Bài 2:

ta có: p + 8 là số nguyên tố

=> p > 3

mà p là số nguyên tố

=> p được viết dưới dạng: 3k+1; 3k+2

nếu p = 3k + 1 => p + 8 = 3k + 1 + 8 = 3k + 9 chia hết cho 3 ( vô lí, p + 8 sẽ không là số nguyên tố ( đầu bài cho)) (Loại)

nếu p = 3k + 2 => p + 100 = 3k + 2 + 100 = 3k + 102 chia hết cho 3

=> p + 100 là hợp số (đpcm)

17 tháng 12 2023
Vì p là số nguyên tố lớn hơn 3 nên p \cancel{vdots} 3 ⇒ p có dạng 3k + 1 hoặc 3k + 2 ( k ∈ N** ) Xét p = 3k + 1 ⇒ 2p + 1 = 2 . ( 3k + 1 ) + 1 = 6k + 2 + 1 = 6k + 3 vdots 3 ( là hợp số ) ( Loại ) ⇒ p có dạng 3k + 2 ⇒ 4p + 1 = 4 . ( 3k  +2 ) + 1 = 12k + 8 + 1 = 12k + 9 vdots 3 ( là hợp số ) Vậy , 4p + 1 là hợp số .  
6 tháng 11 2019

1

gọi số cần tìm là p.dễ thấy p lẻ

=>p=a+2 và p=b-2

=>a=p-2 và b=p+2

vì p-2,p,p+2 là 3 số lẻ liên tiếp nên có một số chia hết cho 3

với p-2=3=>p=5=7-2(chọn)

p=3=>p=1+2(loại)

p+2=3=>p=1(loại)

vậy p=5

2

vì p1, p2, p3 là 3 số nguyên tố (SNT) > 3 
theo giả thiết: 
p3 = p2 + d = p1 + 2d (*) 
=> d = p3 - p2 là số chẵn ( vì p3, p2 lẻ) 
đặt d = 2m, xét các trường hợp: 
* m = 3k => d chia hết cho 6 
* m = 3k + 1: khi đó 3 số là: 
p2 = p1 + d = p1 + 2m = p1 + 6k + 2 
p3 = p1 + 2d = p1 + 4m = p1 + 12k + 4 
do p1 là SNT > 3 nên p1 chia 3 dư 1 hoặc 2 
nếu p1 chia 3 dư 1 => p2 = p1 + 6k + 2 chia hết cho 3 => p2 là hợp số (không thỏa gt) 
nếu p1 chia 3 dư 2 => p3 = p1 + 12k + 4 chia hết cho 3 => p3 là hợp số (---nt--) 
=> p1, p2 , p3 là SNT khi m ≠ 3k + 1 
* m = 3k + 2, khi đó 3 số là: 
p2 = p1 + d = p1 + 2m = p1 + 6k + 4 
p3 = p1 + 2d = p1 + 4m = p1 + 12k + 8 
nếu p1 chia 3 dư 1 => p3 = p1 + 12k + 8 chia hết cho 3 => p3 là hợp số (không thỏa gt) 
nếu p 1 chia 3 dư 2 => p2 = p1 + 6k + 4 chia hết cho 3 => p2 là hợp số ( không thỏa gt) 
=> p1, p2 , p3 là SNT khi m ≠ 3k + 2 
vậy để p1, p 2, p 3 đồng thời là 3 SNT thì m = 3k => d = 2m = 6k chia hết cho 6.

3

ta có p,p+1,p+2 là 3 số liên tiếp nên 1 trong 3 số chia hết cho 3.

mà p,p+2 là SNT >3 nên p,p+2 ko chia hết cho 3 và là số lẻ

=>p+1 chia hết cho 3 và p+1 chẵn=>p+1 chia hết cho 6

4

vì p là SNT >3=>p=3k+1 hoặc p=3k+2

với p=3k+1=>p+8=3k+9 chia hết cho 3

với p=3k+2=>p+4=3k+6 ko phải là SNT

vậy p+8 là hợp số

5

vì 8p-1 là SNt nên p>3=>8p ko chia hết cho 3

vì 8p,8p+1,8p-1 là 3 số liên tiếp nên 1 trong 3 số chia hết cho 3.mà 8p,8p-1 là SNT >3=>8p+1 chia hết cho 3 và 8p+1>3

=>8p+1 là hợp số

6.

Ta có: Xét:

+n=0=>n+1=1;n+3=3;n+7=7;n+9=9;n+13=13;n+15=15n+1=1;n+3=3;n+7=7;n+9=9;n+13=13;n+15=15(hợp số,loại)

+n=1

=>n+1=2;n+3=4;n+7=8;n+9=10;n+13=14;n+15=16n+1=2;n+3=4;n+7=8;n+9=10;n+13=14;n+15=16(hợp số,loại)

+n=2

=>n+1=3;n+3=5;n+7=9;n+9=11;n+13=15;n+15=17n+1=3;n+3=5;n+7=9;n+9=11;n+13=15;n+15=17(hợp số,loại)

+n=3

=>n+1=4;n+3=6;n+7=10;n+9=12;n+13=16;n+15=18n+1=4;n+3=6;n+7=10;n+9=12;n+13=16;n+15=18(hợp số,loại)

+n=4

n+1=5;n+3=7;n+7=11;n+9=13;n+13=17;n+15=19n+1=5;n+3=7;n+7=11;n+9=13;n+13=17;n+15=19(SNT,chọn)

Nếu n>4 sẽ có dạng 4k+1;4k+2;4k+3

+n=4k+1

⇔n+3=4k+1+3=4k+4⇔n+3=4k+1+3=4k+4(hợp số,loại)

+n=4k+2

=>n+13=4k+2+13=4k+15n+13=4k+2+13=4k+15(hợp số,loại)

+n=4k+3

=>n+3=4k+3+3=4k+6n+3=4k+3+3=4k+6(hợp số,loại)

⇔n=4

12 tháng 3 2022

4.vì p là số nguyên tố >3

nên p có dạng 3k+1;3k+2

xét p=3k+1 ta có :p+4=(3k+1)+4=3k+5(thỏa mãn)

xét p=3k+2 ta có: p+4=(3k+2)+4=3k+6 chia hết cho 3(trái với đề bài)

vậy p+8=(3k+1)+8=3k+9 chia hết cho 3

Vậy p+8 là hợp số

 

14 tháng 11 2017

B2

Vì p nguyên tố > 3 nên p lẻ => p^2 lẻ => p^2 + 2003 chia hết cho 2

Mà p^2+2003 > 2 => p^2+2003 là hợp số

k mk nha

14 tháng 11 2017

bài 2 số nguyên tố lớn hơn 3 chỉ có thể là số lẻ

=> số lẻ nhân số lẻ bằng một số lẻ 

vì 2003 là số lẻ nên  số lẻ cộng số lẻ bang số chẵn lớn hơn  2 (vì p^2 là một số nguyên dương)

=> p^2 +2003  là hợp số

20 tháng 2 2016

2 ) Ta có :

8p ; 8p + 1 ; 8p + 2 là 3 số tự nhiên liên tiếp => Tích của chúng chia hết cho 3

 mà p là số nguyên tố , 8  không chia hết cho 3 => 8p không chia hết cho 3 '

8p + 1 là số nguyên tố => không chia hết cho 3

=> 8p + 2 chia hết cho 3 ; 8p + 2 = 2 . ( 4p + 1 ) => 4p + 1 chia hết cho 3 hay 4p + 1 là hợp số

20 tháng 2 2016

quên mất nhớ có lời giải nữa nhé!

30 tháng 10 2019

1, Ta có: p, p+1, p+2 là 3 số liên tiếp nên chắc chắn có 1 số chia hết cho 3 -> p+1 hoặc p+2 chia hết cho 3

p+2+6=p+8 là snt nên ko chia hết cho 3 nên p+1 chia hết cho 3 -> p+1+99 = p+100 chia hết cho 3 -> là hợp số

2, a, Nếu p có dạng 6k,6k+2,6k+3,6k+4 thì chia hết cho 2 hoặc 3

b, Do p là snt > 3 nên 8p ko chia hết cho 3. Trong 3 số liên tiếp 8p,8p+1,8p+2 có 8p và 8p+1 ko chia hết cho 3 nên 8p+2 chia hết cho 3.

Chia cho 2, do(2,3) = 1 nên 4p+1 chia hết cho 3 là hợp số

30 tháng 10 2019

thanks bn HD Film nha