K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
17 tháng 10 2024

Hằng đẳng thức số 3: \(a^2-b^2=\left(a+b\right)\left(a-b\right)\)

nên:

\(x^2-\left(y-1\right)^2=\left[x+\left(y-1\right)\right].\left[x-\left(y-1\right)\right]\)

\(=\left(x+y-1\right)\left(x-y+1\right)\)

Bước cuối cùng trong bài em ghi bên trên bị sai dấu số 1 ngoặc thứ hai

25 tháng 10 2024

1+1=

 

7 tháng 9 2016

x4-y4=j,tu nghi,de ma

28 tháng 7 2016

a)\(\left(x-y\right)^2-2\left(x-y\right)+1=\left(x-y-1\right)^2\)

b)\(x^2-2y-1-2x+1-y^2=\left(x^2-2x+1\right)-\left(y^2+2y+1\right)\)

\(=\left(x-1\right)^2-\left(y+1\right)^2\)

\(=\left[\left(x-1\right)-\left(y+1\right)\right]\left[\left(x-1\right)+\left(y+1\right)\right]\)

\(=\left(x-y-2\right)\left(x+y\right)\)

c)\(x^2-y^2-2x-1=x^2-\left(y^2+2x+1\right)\)

\(=x^2-\left(y+1\right)^2\)

\(=\left(x^2-y-1\right)\left(x^2+y+1\right)\)

28 tháng 7 2016

A. Ta có: (x - y)- 2(x - y)+1 = (x - y)- 2.(x - y).1 +12 = ( x - y - 1)2

B. Ta có: x- 2y -1 - 2x +1 -y2 = (x2 - y2) - (2x - 2y) -1+1 = (x - y)(x + y) - 2(x - y) = (x - y)(x + y - 2)

C. Ta có: x2 - y2 -2y -1 = x2 -(y2 - 2y -1) = x2 - ( y2 +2y1 + 1) = x- (y+1)= (x - y - 1)(x + y +1) 

k cho mình nha bạn hihj!!! ~3~

1 tháng 8 2017

đề là phân tích thanh nhân tử hả???

1 tháng 8 2017

- Những hằng đẳng thức đáng nhớ nha =))

14 tháng 9 2016

1. \(x^2+2y^2+2xy-2y+1=0\)

\(\left(x+y\right)^2+y^2-2y+1=0\)

\(\left(x+y\right)^2+\left(y-1\right)^2=0\)

Có: \(\left(x+y\right)^2\ge0;\left(y-1\right)^2\ge0\)

Mà theo bài ra: \(\left(x+y\right)^2+\left(y-1\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}\left(x+y\right)^2=0\\\left(y-1\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}x+y=0\\y-1=0\end{cases}}\Rightarrow\hept{\begin{cases}x+y=0\\y=1\end{cases}}\Rightarrow\hept{\begin{cases}x=-1\\y=1\end{cases}}\)

31 tháng 8 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

8 tháng 9 2020

\(C=x^2-xy+x-y^2-y+xy\)

\(C=x^2-y^2+x-y=\left(x-y\right)\left(x+y+1\right)\)

Học tốt :))

8 tháng 9 2020

Rút gọn ạ ? -.-

C = x( x - y + 1 ) - y( y + 1 - x )

= x2 - xy + x - y2 - y + xy

= x2 - y2 + x - y

16 tháng 8 2016

\(B=\frac{x^2\left(y-z\right)+y^2\left(z-x\right)+z^2\left(x-y\right)}{x^2y-x^2z+y^2z-y^3}\)

\(=\frac{x^2y-x^2z+zy^2-xy^2+z^2x-z^2y}{x^2\left(y-z\right)-y^2\left(y-z\right)}\)

\(=\frac{\left(x^2y-z^2y\right)-\left(xy^2-zy^2\right)-\left(x^2z-z^2x\right)}{\left(x^2-y^2\right)\left(y-z\right)}\)

\(=\frac{\left[y\left(x+z\right)-y^2-xz\right]\left(x-z\right)}{\left(x-y\right)\left(x+y\right)\left(y-z\right)}\)

\(=\frac{\left(xy+zy-y^2-xz\right)\left(x-z\right)}{\left(x-y\right)\left(x+y\right)\left(y-z\right)}\)

\(=\frac{\left[\left(xy-y^2\right)-\left(xz-zy\right)\right]\left(x-z\right)}{\left(x-y\right)\left(x+y\right)\left(y-z\right)}\)

\(=\frac{\left[y\left(x-y\right)-z\left(x-y\right)\right]\left(x-z\right)}{\left(x-y\right)\left(x+y\right)\left(y-z\right)}\)

\(=\frac{\left(y-z\right)\left(x-y\right)\left(x-z\right)}{\left(x-y\right)\left(x+y\right)\left(y-z\right)}\)

\(=\frac{x-z}{x+y}\)

16 tháng 8 2016

\(A=\frac{\left(x^2-y\right)\left(y+1\right)+x^2y^2-1}{\left(x^2+y\right)\left(y+1\right)+x^2y^2+1}\)

\(=\frac{x^2y-y^2+x^2-y+x^2y^2-1}{x^2y+y^2+x^2+y+x^2y^2+1}\)

\(=\frac{\left(x^2y+x^2\right)+\left(x^2y^2-y^2\right)-\left(y+1\right)}{\left(x^2y+x^2\right)+\left(x^2y^2+y^2\right)+\left(y+1\right)}\)

\(=\frac{x^2\left(y+1\right)+y^2\left(x^2-1\right)-\left(y+1\right)}{x^2\left(y+1\right)+y^2\left(x^2+1\right)+\left(y+1\right)}\)

\(=\frac{\left(x^2-1\right)\left(y+1\right)+y^2\left(x^2-1\right)}{\left(x^2+1\right)\left(y+1\right)+y^2\left(x^2+1\right)}\)

\(=\frac{\left(x^2-1\right)\left(y^2+y+1\right)}{\left(x^2+1\right)\left(y^2+y+1\right)}\)

\(=\frac{x^2-1}{x^2+1}\)