Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Thay x=16 vào A, ta được:
\(A=\dfrac{4-1}{4+3}=\dfrac{3}{7}\)
2: \(P=A:B\)
\(=\dfrac{\sqrt{x}-1}{\sqrt{x}+3}:\dfrac{x-3\sqrt{x}-x-6\sqrt{x}-9+x+11\sqrt{x}+6}{x-9}\)
\(=\dfrac{\sqrt{x}-1}{1}\cdot\dfrac{\sqrt{x}-3}{x+2\sqrt{x}-3}=\dfrac{\sqrt{x}-3}{\sqrt{x}+3}\)
b: kẻ đường kính AD
góc ACD=90 độ=góc ABD
=>AC vuông góc CD và AB vuông góc BD
=>BH//CD và CH//BD
=>BDCH là hbh
=>H,N,D thẳng hàng và N là trung điểm của HD
=>NT là đường trung bình của ΔAHD
=>NT//AD và NT=1/2AD=OA
=>NT//OA
=>ATNO là hbh
EN=1/2BC
=>EN=BN
=>ΔNEB cân tại N
=>góc NBE=góc NEB
EJ=1/2AH=JH
=>ΔJEH cân tại J
=>góc JEH=góc JHE
góc NBE+Góc ACB=90 độ
góc HAC+góc ACB=90 độ
=>góc NBE=góc HAC
mà góc JHE+góc HAC=90 độ
nên góc JHE+góc NBE=90 độ
=>góc JEN=90 độ
Xét tg ABO và tg ACO có
AO chung
AB=AC (gt)
OB=OC=R
=> tg ABO = tg ACO (c.c.c)
\(\Rightarrow\widehat{ACO}=\widehat{ABO}=90^o\Rightarrow AC\perp OC\) => AC là tiếp tuyến với (O)
b/
Xét tg vuông EOI và tg vuông COI có
OE=OC=R; OI chung => tg EOI = tg COI (hai tg vuông có 2 cạnh góc vuông bằng nhau)
Xét tg vuông EDI và tg vuông CDI có
DI chung
tg EOI = tg COI (cmt) => IE=IC
=> tg EDI = tg CDI (hai tg vuông có 2 cạnh góc vuông bằng nhau)
Xét tg DEO và tg DCO có
DO chung
OE=OC=R
tg EDI = tg CDI (cmt) => DE=DC
=> tg DEO = tg DCO (c.c.c)
\(\Rightarrow\widehat{DEO}=\widehat{DCO}=90^o\Rightarrow DE\perp OE\) => DE là tiếp tuyến với (O, R)
a: ΔOBC cân tại O
mà OA là đường cao
nên OA là phân giác của góc BOC
Xét ΔOBA và ΔOCA có
OB=OC
\(\widehat{BOA}=\widehat{COA}\)
OA chung
Do đó: ΔOBA=ΔOCA
=>\(\widehat{OBA}=\widehat{OCA}=90^0\)
=>AC là tiếp tuyến của (O)
b: Ta có: \(\widehat{KOA}+\widehat{BOA}=\widehat{KOB}=90^0\)
\(\widehat{KAO}+\widehat{COA}=90^0\)(ΔOCA vuông tại C)
mà \(\widehat{BOA}=\widehat{COA}\)
nên \(\widehat{KOA}=\widehat{KAO}\)
=>KA=KO
d: Xét (O) có
\(\widehat{ACI}\) là góc tạo bởi tiếp tuyến CA và dây cung CI
\(\widehat{CDI}\) là góc nội tiếp chắn cung CI
Do đó: \(\widehat{ACI}=\widehat{CDI}\)
ΔOCA vuông tại C
=>\(CO^2+CA^2=OA^2\)
=>\(CA^2=\left(2R\right)^2-R^2=3R^2\)
=>\(CA=R\sqrt{3}\)
Xét ΔACI và ΔADC có
\(\widehat{ACI}=\widehat{ADC}\)
\(\widehat{CAI}\) chung
Do đó: ΔACI đồng dạng với ΔADC
=>\(\dfrac{AC}{AI}=\dfrac{AD}{AC}\)
=>\(AI\cdot AD=AC^2=\left(R\sqrt{3}\right)^2=3R^2\) không đổi
a: Khi m=-2 thì (d): y=-5x-2
ii: Tọa độ giao điểm của (P) và (d) là:
\(\left\{{}\begin{matrix}2x^2+5x+2=0\\y=2x^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\in\left\{-\dfrac{1}{2};-2\right\}\\y\in\left\{\dfrac{1}{2};8\right\}\end{matrix}\right.\)
Vậy: M(-1/2;1/2); N(-2;8)
\(OM=\sqrt{\left(-\dfrac{1}{2}-0\right)^2+\left(\dfrac{1}{2}-0\right)^2}=\sqrt{\dfrac{1}{4}+\dfrac{1}{4}}=\dfrac{\sqrt{2}}{2}\)
\(ON=\sqrt{\left(-2-0\right)^2+\left(8-0\right)^2}=2\sqrt{17}\)
\(MN=\sqrt{\left(-2+\dfrac{1}{2}\right)^2+\left(8-\dfrac{1}{2}\right)^2}=\sqrt{\dfrac{9}{4}+\dfrac{225}{4}}=\dfrac{3\sqrt{26}}{2}\)
\(P=OM+ON+NM\simeq4,93\left(cm\right)\)
\(S=\sqrt{4,93\cdot\left(4,93-\dfrac{\sqrt{2}}{2}\right)\cdot\left(4.93-2\sqrt{17}\right)\left(4.93-\dfrac{3\sqrt{26}}{2}\right)}=13,7\left(cm^2\right)\)
a: \(\Leftrightarrow\left\{{}\begin{matrix}6x=-12\\x-2y=-8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\2y=x+8=-2+8=6\end{matrix}\right.\Leftrightarrow\left(x,y\right)=\left(-2;3\right)\)
b: \(\Leftrightarrow\left\{{}\begin{matrix}x-2y=5\\x-2y=5\end{matrix}\right.\Leftrightarrow\left(x,y\right)\in R\)
c: \(\Leftrightarrow\left\{{}\begin{matrix}3x-3y=9\\3x-3y=1\end{matrix}\right.\Leftrightarrow\left(x,y\right)\in\varnothing\)
d: \(\Leftrightarrow\left\{{}\begin{matrix}-5y=5\\3x+y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-1\\x=0\end{matrix}\right.\)
Với m=-2
Phương trình tọa độ giao điểm của (d) và (P) là:
\(2x^2=\left(-2-3\right)x+\left(-2\right)\Leftrightarrow2x^2+5x+2=0\Leftrightarrow\)\(\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=-2\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}y=\dfrac{1}{2}\\y=8\end{matrix}\right.\)
Gọi \(M\left(-\dfrac{1}{2};\dfrac{1}{2}\right),N\left(-2;8\right)\) và kẻ \(NH\perp MO\) ta có hình vẽ như sau:
Gọi phương trình đường thẳng MO là: ax+b=y
\(\left\{{}\begin{matrix}a.0+b=0\\-2a+b=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=0\\a=-4\end{matrix}\right.\)
Phương trình đường thẳng MO là: -4x=y
Gọi phương trình đường thẳng NH là: ax+b=y
Để NH vuông góc với MO thì: a.a'=-1 \(\Leftrightarrow a.\left(-4\right)=-1\Leftrightarrow a=\dfrac{1}{4}\)
Ta có: \(y=\dfrac{1}{4}x+b\Leftrightarrow\dfrac{1}{2}=\dfrac{1}{4}.\dfrac{-1}{2}+b\Rightarrow b=\dfrac{5}{8}\)
Phương trình đường thẳng NH là: \(y=\dfrac{1}{4}x+\dfrac{5}{8}\)
Phương trình tọa độ giao điểm của NH và MO là: \(-4x=\dfrac{1}{4}x+\dfrac{5}{8}\Leftrightarrow x=\dfrac{-5}{34}\Rightarrow y=\dfrac{10}{17}\)
Độ dài đoạn NH là: NH= \(\sqrt{\left(-\dfrac{5}{34}--\dfrac{1}{2}\right)^2+\left(\dfrac{10}{17}-\dfrac{1}{2}\right)^2}=\dfrac{3\sqrt{17}}{34}\)
Độ dài đoạn MO là: MO=\(\sqrt{\left(-2-0\right)^2+\left(8-0\right)^2}=2\sqrt{17}\)
Diện tích tam giác OMN là: \(S=\dfrac{1}{2}NH.OM=\dfrac{1}{2}.\dfrac{3\sqrt{17}}{34}.2\sqrt{17}\)=1,5(đvdt)
5:
a: góc MAO+góc MBO=180 độ
=>MAOB nội tiếp
Xét (O) có
MA,MB là tiếp tuyến
=>MA=MB
b: \(MA=\sqrt{OM^2-OA^2}=R\sqrt{3}\)
=>\(AH=\dfrac{R\cdot R\sqrt{3}}{2R}=\dfrac{R\sqrt{3}}{2}\)
=>\(AB=R\sqrt{3}\)
khai triển P, ta được:
\(P=\dfrac{xy^2+yz^2+zx^2-x^2y-y^2z-z^2x}{2xy^2+2yz^2+2zx^2+3xyz}\)
\(P=\dfrac{xy^2+yz^2+zx^2+x^2y+y^2z+z^2x+3xyz}{2xy^2+2yz^2+2zx^2+3xyz}-1\)
\(P=\dfrac{\left(x+y+z\right)\left(xy+yz+zx\right)}{2xy^2+2yz^2+2zx^2+3xyz}-1\)\(P=\dfrac{0}{2xy^2+2yz^2+2zx^2+3xyz}-1=-1\)