Giúp mik nhanh với ạ

Cho ΔABC vuông tại A, đường cao AH

a, Biết...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AC=\sqrt{20^2-12^2}=16\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

=>\(AH\cdot20=12\cdot16=192\)

=>\(AH=\dfrac{192}{20}=9,6\left(cm\right)\)

Xét ΔABC vuông tại A có \(sinABC=\dfrac{AC}{BC}=\dfrac{16}{20}=\dfrac{4}{5}\)

nên \(\widehat{ABC}\simeq53^0\)

b: Xét tứ giác AMHN có \(\widehat{AMH}=\widehat{ANH}=\widehat{MAN}=90^0\)

nên AMHN là hình chữ nhật

=>AH=MN

Xét ΔAHB vuông tại H có HM là đường cao

nên \(MA\cdot MB=HM^2\)

Xét ΔAHC vuông tại H có HN là đường cao

nên \(NA\cdot NC=HN^2\)

AMHN là hình chữ nhật

=>\(HA^2=HM^2+HN^2\)

\(MA\cdot MB+NA\cdot NC=HM^2+HN^2=AH^2\)

27 tháng 10 2021

b: \(AN\cdot AC=AH^2\)

\(AC^2-HC^2=AH^2\)

Do đó: \(AN\cdot AC=AC^2-HC^2\)

27 tháng 10 2021

mình cần phần d

27 tháng 10 2021

a: AC=16(cm)

AM=10(cm)

27 tháng 10 2021

phần d bạn :,)))

c: Xét ΔAHB vuông tại H có \(AE\cdot AB=AH^2\)

=>\(AE=\dfrac{AH^2}{AB}\)

Xét ΔAHC vuông tại H có HF là đường cao

nên \(AF\cdot AC=AH^2\)

=>\(AF=\dfrac{AH^2}{AC}\)

XétΔABC vuông tại A có

\(tanC=\dfrac{AB}{AC}\)

\(\dfrac{AF}{AE}=\dfrac{AH^2}{AC}:\dfrac{AH^2}{AB}=\dfrac{AB}{AC}=tanC\)

=>\(AF=AE\cdot tanC\)

b: Xét ΔAHC vuông tại H có 

\(AC^2=AH^2+HC^2\)

hay \(AH^2=AC^2-HC^2\left(1\right)\)

Xét ΔAHC vuông tại H có HN là đường cao ứng với cạnh huyền AC

nên \(AN\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AC^2-HC^2=AN\cdot AC\)

a: BC=căn 6^2+8^2=10cm

AH=6*8/10=4,8cm

c:

Xét tứ giác ANHM có

góc ANH=góc AMH=góc MAN=90 độ

=>ANHM là hình chữ nhật

AD vuông góc MN

=>góc DAC+góc ANM=90 độ

=>góc DAC+góc AHM=90 độ

=>góc DAC+góc ABC=90 độ

=>góc DAC=góc DCA

=>DA=DC 

góc DAC+góc DAB=90 độ

góc DCA+góc DBA=90 độ

mà góc DAC=góc DCA

nên góc DAB=góc DBA

=>DA=DB

=>DB=DC

=>D là trung điểm của BC

20 tháng 10 2021

\(a,AC=\sqrt{BC^2-AB^2}=16\left(cm\right)\left(pytago\right)\)

Áp dụng HTL: \(AH\cdot BC=AB\cdot AC\Leftrightarrow AH=\dfrac{192}{20}=9,6\left(cm\right)\)

\(\sin\widehat{B}=\dfrac{AC}{BC}=\dfrac{16}{20}=\dfrac{4}{5}\approx\sin53^07'\Leftrightarrow\widehat{B}\approx53^07'\)

20 tháng 10 2021

Cảm ơn bạn !!!

13 tháng 10 2021

 

1542966759_7.jpg