Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì 2x-1 là bội của x+5 nên 2x-1 \(⋮\)x+5
=> x+5 \(⋮\)x+5
=> ( 2x-1) - ( x+5) \(⋮\)x+5
=> (2x-1) - 2(x+5) \(⋮\)x+5
=> 2x -1 - 2x -10 \(⋮\)x+5
=> -11 \(⋮\)x+5
=> x+5 \(\in\)Ư(11) ={ 1;11; -1; -11}
=> x\(\in\){ -4; 6; -6; -16}
Vậy....
<=> x(2y-1) + 2y = 8
<=> x(2y-1) + 2y-1 = 7 (trừ 1 ở hai vế)
<=> (2y-1)(x+1) = 7
- Trường hợp 1: 2y-1=7 <=> y=4 (thỏa mãn y thuộc Z)
x+1=1 <=> x=0 (thỏa mãn x thuộc Z)
- Trường hợp 2: 2y-1=1 <=> y=1 (thỏa mãn y thuộc Z)
x+1=7 <=> x=6 (thỏa mãn x thuộc Z)
Vậy các bộ số (x,y) thỏa mãn yêu cầu bài toán là (0,4) và (6,1).
( x - 7 ) ( 2y + 3 ) = 32
<=> ( 2x - 14 ) y + 3x - 21 = 32
<=> ( 2x - 14) y + 3x - 32 - 21 = 0
<=> ( 2x - 14 ) y + 3x - 53 = 0
<=> ( 2x - 7) = 0
<=> 2x=2.7
<=> x = 7
<=> 2y + 3 = 0
<=> 2y = -3
<=> y = -1,5
Có \(2xy+3x-2y=20\)
\(\Rightarrow\left(2xy-2y\right)+3x=20\)
\(\Rightarrow2y\left(x-1\right)+3x=20\)
\(\Rightarrow2y\left(x-1\right)+3x-3=20-3\)
\(\Rightarrow2y\left(x-1\right)+3\left(x-1\right)=17\)
\(\Rightarrow\left(2y+3\right)\left(x-1\right)=17\)
\(\Rightarrow\hept{\begin{cases}2y+3\inƯ\left(17\right)\\x-1\inƯ\left(17\right)\end{cases}}\)
Ta có bảng giá trị sau:
2y+3 | 1 | 17 | -17 | -1 |
x-1 | 17 | 1 | -1 | -17 |
x | 18 | 2 | 0 | -16 |
y | -1 | 7 | -10 | -2 |
Vậy các cặp (x;y) thỏa mãn là (18;-1),(2;7),(0;-10);(-16;-2)
\(2xy-5x-2y=12\)
\(\Leftrightarrow x\left(2y-5\right)-2y+5=17\)
\(\Leftrightarrow\left(x-1\right)\left(2y-5\right)=17\)
Vì \(x,y\)nguyên nên \(x-1,2y-5\)là các ước của \(17\).
Ta có bảng giá trị:
x-1 | -17 | -1 | 1 | 17 |
2y-5 | -1 | -17 | 17 | 1 |
x | -16 | 0 | 2 | 18 |
y | 2 | -6 | 11 | 3 |
\(2xy+x+2y+4=2\)
=> \(x\left(2y+1\right)+\left(2y+1\right)=-1\)
=> \(\left(x+1\right)\left(2y+1\right)=-1\)
Ta có bảng:
x+1 | 1 | -1 |
2y+1 | -1 | 1 |
x | 0 | -2 |
2y | -2 | 0 |
y | -1 | 0 |
Vậy các cặp số (x;y) tmđb là (0;-1);(-2;0)
Mình nghĩ là đề : xy sẽ hay hơn
\(xy+x+2y+4=2\)
\(\Leftrightarrow xy+x+2y+4-2=0\)
\(\Leftrightarrow xy+x+2y+2=0\)
\(\Leftrightarrow x\left(y+1\right)+2\left(y+1\right)=0\)
\(\Leftrightarrow\left(y+1\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y+1=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\y=-1\end{matrix}\right.\)
`2xy + x + 2y = 5`
`=> 2y (x + 1) = 15 - x`
`=> 2y = (5-x)/(x+1) `
Do `y in Z`
`=> 2y in Z`
`=> 5 - x vdots` `x + 1`
`=> 6 - (x+1) vdots x + 1`
`=> 6 vdots x+1`
`=> x+1 in Ư(6) = {-6;-3;-2;-1;1;2;3;6}`
`=> x in {-7;-4;-3;-2;0;1;2;5}`
`=> 2y in {-2;-3;-4;-7;5;2;1;0}`
`=> y in {-1;-3/2;-2;-7/2;5/2;1;1/2;0}`
Mà `y in Z `
`=> (x;y)` thỏa mãn là: ` (-7;-1);(-3;-2);(1;1);(5;0)`
Vậy ...
Các cặp số nguyên (x,y)(x, y)(x,y) thỏa mãn phương trình 2xy+x+2y=52xy + x + 2y = 52xy+x+2y=5 là:
Nếu bạn cần thêm thông tin hoặc muốn giải bài toán khác, hãy cho mình biết nhé!