Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gggggjjjk..hhhyh iuugln............................lklhuluiiiihhhhhhh ok-
Nhận xét: AD, BE và CF là các đường cao, chúng đồng quy tại một điểm.
Dễ dàng thấy được \(\widehat{ABC}=\widehat{ADE}\) và \(\widehat{ACB}=\widehat{AED}\) (vì với mỗi cặp thì hai góc của cặp đó là hai góc so le trong)
Vì \(\widehat{ADE}\) và \(\widehat{BDE}\) là hai góc kề bù nên \(\widehat{ADE}+\widehat{BDE}=180^o\)
Mà \(\widehat{ABC}=\widehat{ADE}\) nên \(\widehat{ABC}+\widehat{BDE}=180^o\), suy ra \(\widehat{ABC}\) và \(\widehat{BDE}\) là hai góc bù nhau.
Suy luận tương tự như trên, ta được \(\widehat{ACB}\) và \(\widehat{CED}\) là hai góc bù nhau.
a: \(\widehat{EBC}=\dfrac{\widehat{ABC}}{2}\)
\(\widehat{DCB}=\dfrac{\widehat{ACB}}{2}\)
mà \(\widehat{ABC}=\widehat{ACB}\)
nên \(\widehat{EBC}=\widehat{DCB}\)
Xét ΔDBC và ΔECB có
\(\widehat{DBC}=\widehat{ECB}\)
BC chung
\(\widehat{DCB}=\widehat{EBC}\)
Do đo: ΔDBC=ΔECB
b: Xét ΔBEF có \(\widehat{EBF}=\widehat{EFB}\left(=\widehat{DCB}\right)\)
nên ΔBEF cân tại E
Ta có: MN//BC
=>\(\widehat{AMN}=\widehat{ABC};\widehat{ANM}=\widehat{ACB}\)(các cặp góc đồng vị)
=>\(\widehat{ABC}=40^0;\widehat{ACB}=50^0\)
BD là phân giác của góc ABC
=>\(\widehat{DBC}=\dfrac{\widehat{ABC}}{2}=\dfrac{40^0}{2}=20^0\)
CD là phân giác của góc ACB
=>\(\widehat{DCB}=\dfrac{\widehat{ACB}}{2}=\dfrac{50^0}{2}=25^0\)
Vì \(20^0< 25^0\)
nên \(\widehat{DBC}< \widehat{DCB}\)