Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (x-1)*(x+2)-(x-3)*(-x+4)=19
\(\Leftrightarrow x^2+2x-x-2-\left(-x^2+4x+3-12\right)=19\)
\(\Leftrightarrow x^2+2x-x-2+x^2-4x-3+12=19\)
\(\Leftrightarrow2x^2-3x+7-19=0\)
\(\Leftrightarrow2x^2-3x-12=0\)
Đề sai??
b) (2x -1)*(3x+5)-(6x-1)*(6x+1)=(-17)
\(\Leftrightarrow6x^2+10x-3x-5-\left(36x^2+6x-6x-1\right)=-17\)
\(\Leftrightarrow6x^2+10x-3x-5-36x^2-6x+6x+1=-17\)
\(\Leftrightarrow-30x^2+7x-4+17=0\)
\(\Leftrightarrow-30x^2+7x+13=0\)
???
a) \(\left(x+3\right)^2-\left(x-4\right)\left(x+8\right)=1\)
\(\Leftrightarrow\left(x^2+6x+9\right)-\left(x^2+4x-32\right)-1=0\)
\(\Leftrightarrow2x=-40\)
\(\Rightarrow x=-20\)
b) \(\left(x+3\right)\left(x^2-3x+9\right)-x\left(x-2\right)\left(x+2\right)=15\)
\(\Leftrightarrow x^3+27-x^3+4x=15\)
\(\Leftrightarrow4x=-12\)
\(\Rightarrow x=-3\)
c) \(\left(x-2\right)^2-\left(x+3\right)^2-4\left(x+1\right)=5\)
\(\Leftrightarrow\left(x^2-4x+4\right)-\left(x^2+6x+9\right)-\left(4x+4\right)=5\)
\(\Leftrightarrow-14x=14\)
\(\Rightarrow x=-1\)
d) \(\left(2x-3\right)\left(2x+3\right)-\left(x-1\right)^2-3x\left(x-5\right)=-44\)
\(\Leftrightarrow4x^2-9-\left(x^2-2x+1\right)-\left(3x^2-15x\right)=-44\)
\(\Leftrightarrow17x=-34\)
\(\Rightarrow x=-2\)
e) \(\left(x-2\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+6\left(x+1\right)^2=49\)
\(\Leftrightarrow x^3-6x^2+12x-8-x^3+27+6x^2+12x+6=49\)
\(\Leftrightarrow24x=24\)
\(\Rightarrow x=1\)
Bài 4.
1) ( x + 3 )( x2 - 3x + 9 ) - x( x2 - 3 ) = 8( 5 - x )
<=> x3 + 27 - x3 + 3x = 40 - 8x
<=> 27 + 3x = 40 - 8x
<=> 3x + 8x = 40 - 27
<=> 11x = 13
<=> x = 13/11
2) ( 2x + 1 )3 + ( 2x + 3 )3 = 0
<=> [ ( 2x + 1 ) + ( 2x + 3 ) ][ ( 2x + 1 )2 - ( 2x + 1 )( 2x + 3 ) + ( 2x + 3 )2 ] = 0
<=> ( 2x + 1 + 2x + 3 )[ 4x2 + 4x + 1 - ( 4x2 + 8x + 3 ) + 4x2 + 12x + 9 ] = 0
<=> ( 4x + 4 )( 8x2 + 16x + 10 - 4x2 - 8x - 3 ) = 0
<=> ( 4x + 4 )( 4x2 + 8x + 7 ) = 0
<=> \(\orbr{\begin{cases}4x+4=0\\4x^2+8x+7=0\end{cases}}\)
+) 4x + 4 = 0
<=> 4x = -4
<=> x = -1
+) 4x2 + 8x + 7 = 0 (*)
Ta có 4x2 + 8x + 7 = ( 4x2 + 8x + 4 ) + 3 = ( 2x + 2 )2 + 3 ≥ 3 > 0 ∀ x
=> (*) không xảy ra
Vậy x = -1
Bài 5.
1) A = x2 - 2x + 2 = ( x2 - 2x + 1 ) + 1 = ( x - 1 )2 + 1 ≥ 1 ∀ x
Đẳng thức xảy ra <=> x - 1 = 0 => x = 1
=> MinA = 1 <=> x = 1
2) A = 4x2 + 4x + 5 = ( 4x2 + 4x + 1 ) + 4 = ( 2x + 1 )2 + 4 ≥ 4 ∀ x
Đẳng thức xảy ra <=> 2x + 1 = 0 => x = -1/2
=> MinA = 4 <=> x = -1/2
3) A = 2x2 + 3x + 3 = 2( x2 + 3/2x + 9/16 ) + 15/8 = 2( x + 3/4 )2 + 15/8 ≥ 15/8 ∀ x
Đẳng thức xảy ra <=> x + 3/4 = 0 => x = -3/4
=> MinA = 15/8 <=> x = -3/4
4) A = 3x2 + 5x = 3( x2 + 5/3x + 25/36 ) - 25/12 = 3( x + 5/6 )2 - 25/12 ≥ -25/12 ∀ x
Đẳng thức xảy ra <=> x + 5/6 = 0 => x = -5/6
=> MinA = -25/12 <=> x = -5/6
5) B = 2x - x2 - 4 = -( x2 - 2x + 1 ) - 3 = -( x - 1 )2 - 3 ≤ -3 ∀ x
Đẳng thức xảy ra <=> x - 1 = 0 => x = 12
=> MaxB = -3 <=> x = 1
6) -x2 - 4x = -( x2 + 4x + 4 ) + 4 = -( x + 2 )2 + 4 ≤ 4 ∀ x
Đẳng thức xảy ra <=> x + 2 = 0 => x = -2
=> MaxB = 4 <=> x = -2
7) B = 3x - 2x2 - 2 = -2( x2 - 3/2x + 9/16 ) - 7/8 = -2( x - 3/4 )2 - 7/8 ≤ -7/8 ∀ x
Đẳng thức xảy ra <=> x - 3/4 = 0 => x = 3/4
=> MaxB = -7/8 <=> x = 3/4
8) B = x( 3 - x ) = -x2 + 3x = -( x2 - 3x + 9/4 ) + 9/4 = -( x - 3/2 )2 + 9/4 ≤ 9/4 ∀ x
Đẳng thức xảy ra <=> x - 3/2 = 0 => x = 3/2
=> MaxB = 9/4 <=> x = 3/2
9) A = ( x - 1 )( x + 1 )( x + 2 )( x + 4 )
= [ ( x - 1 )( x + 4 ) ][ ( x + 1 )( x + 2 ) ]
= ( x2 + 3x - 4 )( x2 + 3x + 2 ) (*)
Đặt t = x2 + 3x - 4
(*) <=> t( t + 6 )
= t2 + 6t
= ( t2 + 6t + 9 ) - 9
= ( t + 3 )2 - 9
= ( x2 + 3x - 4 + 3 )2 - 9
= ( x2 + 3x - 1 )2 - 9 ≥ -9 ∀ x
=> MinA = -9 ( chỗ này mình không xét giá trị của x vì nghiệm nó xấu lắm '-' )
a) ( x + 2 )( x + 3 ) - ( x - 2 )( x + 5 ) = 16
<=> x2 + 5x + 6 - ( x2 + 3x - 10 ) = 16
<=> x2 + 5x + 6 - x2 - 3x + 10 = 16
<=> 2x + 16 = 16
<=> 2x = 0
<=> x = 0
b) 3x( 2x - 4 ) - 2x( 3x + 5 ) = 44
<=> 6x2 - 12x - 6x2 - 10x = 44
<=> -22x = 44
<=> x = -2
c) 2( 5x - 8 - 3 )( 4x - 5 ) = 4( 3x - 4 )
<=> 2( 5x - 11 )( 4x - 5 ) = 4( 3x - 4 )
<=> 2( 20x2 - 69x + 55 ) = 12x - 16
<=> 40x2 - 138x + 110 = 12x - 16
<=> 40x2 - 138x + 110 - 12x + 16 = 0
<=> 40x2 - 150 + 126 = 0 ( chưa học nghiệm vô tỉ nên để vô nghiệm nha :) )
=> Vô nghiệm
dòng thứ tư câu a quên chưa chuyển vế 15-9 rồi kìa phải là 45x=6 mới đúng nha
\(A=x^2-2x+10\)
\(A=\left(x^2-2x+1\right)+9\)
\(A=\left(x-1\right)^2+9\)
Mà \(\left(x-1\right)^2\ge0\)
\(\Rightarrow A\ge9\)
Dấu "=" xảy ra khi :
\(x-1=0\Leftrightarrow x=1\)
Vậy Min A = 9 khi x = 1
\(B=x^2-5x-7\)
\(B=\left(x^2-5x+\frac{25}{4}\right)-\frac{53}{4}\)
\(B=\left(x-\frac{5}{2}\right)^2-\frac{53}{4}\)
Mà \(\left(x-\frac{5}{2}\right)^2\ge0\)
\(\Rightarrow B\ge-\frac{53}{4}\)
Dấu "=" xảy ra khi :
\(x-\frac{5}{2}=0\Leftrightarrow x=\frac{5}{2}\)
Vậy \(B_{Min}=-\frac{53}{4}\Leftrightarrow x=\frac{5}{2}\)
\(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2-2\right)=15\)
\(x^3-2x^2+4x+2x^2-4x+8-x^3+2x=15\)
\(2x+8=15\)
\(2x=7\)
\(x=\frac{7}{2}\)
\(\Leftrightarrow x^3-3x^2+3x-1+8-x^3+3x^2+6x=17\)
\(\Leftrightarrow9x+7=17\)
\(\Leftrightarrow9x=10\)
\(\Leftrightarrow x=\frac{10}{9}\)
`a,(x + 2)^2 + (x + 3)^2 - 2(x-2)(x-3) = 19`
`=> x^2 + 4x + 4 + x^2 + 6x + 9 - (2x^2 - 10x + 12) = 19`
`=> x^2 + 4x + 4 + x^2 + 6x + 9 - 2x^2 + 10x - 12 = 19`
`=> 20x + 1 = 19`
`=> 20x = 18`
`=> x = 18:20`
`=> x=9/10`
Vậy: `x=9/10`
`b, (x+2)(x^2 -2 x + 4)-x(x^2-5)=15`
`=> x^3 + 2^3 - x^3 + 5x = 15`
`=> 5x + 8 = 15`
`=> 5x = 7`
`=> x = 7:5`
`=> x=7/5`
Vậy:`x=7/5`
`c, (x-1)^3 + (2-x)(4 + 2x + x^2) + 3x(x + 2) = 17`
`=> x^3 - 3x^2 + 3x - 1 + 8 - x^3 + 3x^2 + 6x = 17`
`=> 9x + 7 = 17`
`=> 9x = 10`
`=> x = 10:9`
`=> x=10/9`
Vậy: `x=10/9`
a)x^2 + 4x + 4 + x^2 + 6x + 9 -2(x^2 - 5x + 6)=19
x^2 + 4x + 4 + x^2 + 6x + 9 - 2x^2 + 10x - 12 = 19
20x + 1 = 19
20x=19-1
20x=18
x=9/10
B)x^3 - 2x^2 + 4x + 2x^2 - 4x + 8 -x^3 + 5x=15
x^3 + 8 - x^3 + 5x = 15
5x+8=15
5x=7
x=5/7
Câu c bạn tự làm nhé