K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 9

1.\(\left(3x-2y\right)\left(9x^2+6xy+4y^2\right)+8y^3\)

\(=\left(3x-2y\right)\left[\left(3x\right)^2+3x.2y+\left(2y\right)^2\right]+8y^3\)

\(=\left(3x\right)^3-\left(2y\right)^3+8y^3\)

\(=27x^3-8y^3+8y^3\)

\(=27x^3\)

2.Ta có:

\(\left(a+b\right)^3-3ab\left(a+b\right)\)

\(=a^3+3a^2b+3ab^2+b^3-\left[\left(3ab.a\right)+\left(3ab.b\right)\right]\)

\(=a^3+3a^2b+3ab^2+b^3-\left[3a^2b+3ab^2\right]\)

\(=a^3+3a^2b+3ab^2+b^3-3a^2b-3ab^2\)

\(=a^3+\left(3a^2b-3a^2b\right)+\left(3ab^2-3ab^2\right)+b^3\)

\(=a^3+b^3\)

Vậy suy ra  \(a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)\)

28 tháng 6 2017

Biến đổi VP

=> VT = VP

=> Đpcm

2 tháng 10 2021

\(A=x^3-8-128-x^3=-136\\ B=8x^3+27y^3-27x^3+8y^3=-19x^3+35y^3\)

2 tháng 10 2021

\(A=\left(x-2\right)\left(x^2+2x+4\right)-\left(128+x^3\right)=x^3-8-128-x^3=-136\)

\(B=\left(2x+3y\right)\left(4x^2-6xy+9y^2\right)-\left(3x-2y\right)\left(9x^2+6xy+4y^2\right)=8x^3+27y^3-27x^3+8y^3=-19x^3+35y^3\)

 

\(\left(a+b\right)^3-3ab\left(a+b\right)\)

\(=\left(a+b\right)\left(a^2-ab+b^2\right)\)

\(=a^3+b^3\)

AH
Akai Haruma
Giáo viên
5 tháng 10 2021

Lời giải:

$(a+b)^3-3ab(a+b)$

$=a^3+3a^2b+3ab^2+b^3-(3a^2b+3ab^2)$

$=a^3+b^3$
Ta có đpcm.

5 tháng 10 2021

\(VP=\left(a+b\right)^3-3ab\left(a+b\right)=a^3+3a^2b+3ab^2+b^3-3a^2b-3ab^2=a^3+b^3=VT\)

5 tháng 10 2021

\(\left(a+b\right)^3-3ab\left(a+b\right)=a^3+b^3+3a^2b+3ab^2-3a^2b-3ab^2=a^3+b^3\left(đpcm\right)\)

\(N=a^3+b^3+3ab\)

\(=\left(a+b\right)^3-3ab\left(a+b\right)+3ab\)

=1

26 tháng 9 2021

\(M=\left(a^2+b^2+2-a^2-b^2+2\right)\left[\left(a^2+b^2+2\right)^2+\left(a^2+b^2+2\right)\left(a^2+b^2-2\right)+\left(a^2+b^2-2\right)^2\right]-12\left(a^2+b^2\right)^2\\ M=4\left(a^4+b^4+4+4a^2+4b^2+2a^2b^2+\left(a^2+b^2\right)^2-4+a^4+b^4+4-4a^2-4b^2+2a^2b^2\right)-12\left(a^4+2a^2b^2+b^4\right)\\ M=4\left(3a^4+3b^4+4+6a^2b^2\right)-12\left(a^4+2a^2b^2+b^4\right)\\ M=4\left(3a^4+3b^4+4+6a^2b^2-3a^4-6a^2b^2-3b^4\right)\\ M=4\cdot4=164\)

\(\left(a+b\right)^3-3ab\left(a+b\right)\)

\(=\left(a+b\right)\left(a^2+2ab+b^2-3ab\right)\)

\(=\left(a+b\right)\left(a^2-ab+b^2\right)\)

\(=a^3+b^3\)

20 tháng 7 2021

a) x2-4y2-x++2y

= x2-(2y)2-x+2y

= (x-2y)(x+2y)-(x-2y)

=(x-2y)(x+2y-1)

1b.=2((x+y)+(x+y)(x-y)+(x-y))=2(x2-y2+x+y+x-y)=2(x2-y2+2x)=2x2-2y2+4x

2a.=4xy+4xy+2y=8xy+2y=2y(4x+1)

b.=(3x)2+2.3x.y+y2-(2z)2=(3x+y)2-(2z)2=(3x+y-2z)(3x+y+2z)

c.=x2-x-7x+7=x(x-1)-7(x-1)=(x-1)(x-7)

30 tháng 9 2018

\(\left(x+y\right)^2+2\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\)

\(=\left(x+y+x-y\right)^2\)

\(=\left(2x\right)^2\)

\(=4x^2\)

hk tốt

^^

Câu 1. Khai triển biểu thức x3 -8y3 ta được kết quả là: A. (x-2y)3 B. x3 -2y3 C. (x-2y)(x2+2xy+4y2 ) D. x3 -6x2y + 12xy2 -8y3 Câu 2. Kết quả phép tính -x 2 (3-2x)là: A. 3x2 -2x3 B.2x3 -3x2 C.-3x3+2x2 D.-4x2 Câu 3. Để 4y2 -12y + trở thành một hằng đẳng thức. Giá trị trong ô vuông là: A. 6 B. 9 C. – 9 D. Một kết quả khác Câu 4. Biểu thức 1012 – 1 có giá trị bằng A. 100 B. 1002 C. 102000 D. Một kết quả khác Câu 5. Giá trị của biểu thức...
Đọc tiếp

Câu 1. Khai triển biểu thức x3 -8y3 ta được kết quả là: A. (x-2y)3 B. x3 -2y3 C. (x-2y)(x2+2xy+4y2 ) D. x3 -6x2y + 12xy2 -8y3 Câu 2. Kết quả phép tính -x 2 (3-2x)là: A. 3x2 -2x3 B.2x3 -3x2 C.-3x3+2x2 D.-4x2 Câu 3. Để 4y2 -12y + trở thành một hằng đẳng thức. Giá trị trong ô vuông là: A. 6 B. 9 C. – 9 D. Một kết quả khác Câu 4. Biểu thức 1012 – 1 có giá trị bằng A. 100 B. 1002 C. 102000 D. Một kết quả khác Câu 5. Giá trị của biểu thức x2+2xy+y2 tại x = - 1 và y = - 3 bằng A. 16 B. – 4 C. 8 D. Một kết quả khác Câu 6. Biết 4x(x2 -25)=0, các số x tìm được là: Hiếu Quân - 4 - A. 0; 4; 5 B. 0; 4 C. -5; 0; 5 D. Một kết quả khác Câu 7. Phân tích đa thức – 2x + 4 thành nhân tử, ta được kết quả đúng là: A. -2x +4 =2(2-x) B. -2x+4 = -2(2-x) C. -2x +4= -2(x+2) D. -2x+4= 2(x-2) Câu 8. Thực hiện phép nhân x(x-y) A.x2 -y B.x-xy C.x-x 2 D.x 2 -xy Câu 9. Tích của đơn thức x2 và đa thức 5x3 -x-1 là: A. 5x6 -x 3 -x 2 B. -5x5+ x3 +x2 C. 5x5 -x 3 -x 2 D. 5x5 -x-1 Câu 10. Đa thức 3x2 -12được phân tích thành nhân tử là: A. 3x(x-2)2 B. 3x( x2+4) C. 3(x - 2)(x + 2) D. x(3x - 2)(3x + 2)

1
28 tháng 10 2021

Câu 1: C

Câu 2: B

27 tháng 8 2023

a) \(\left(x+2y\right)^2-\left(x-y\right)^2=\left(x+2y+x-y\right)\left(x+2y-x+y\right)\)

\(=\left(2x+y\right).3y\)

b) \(\left(x+1\right)^3+\left(x-1\right)^3\)

\(=\left(x+1+x-1\right)\left[\left(x+1\right)^2-\left(x+1\right)\left(x-1\right)+\left(x-1\right)^2\right]\)

\(=2x\left[\left(x+1\right)^2-\left(x^2-1\right)+\left(x-1\right)^2\right]\)

c) \(9x^2-3x+2y-4y^2\)

\(=9x^2-4y^2-3x+2y\)

\(=\left(3x-2y\right)\left(3x+2y\right)-\left(3x-2y\right)\)

\(=\left(3x-2y\right)\left[3x+2y-1\right]\)

d) \(4x^2-4xy+2x-y+y^2\)

\(=4x^2-4xy+y^2+2x-y\)

\(=\left(2x-y\right)^2+2x-y\)

\(=\left(2x-y\right)\left(2x-y+1\right)\)

e) \(x^3+3x^2+3x+1-y^3\)

\(=\left(x+1\right)^3-y^3\)

\(=\left(x+1-y\right)\left[\left(x+1\right)^2+y\left(x+1\right)+y^2\right]\)

g) \(x^3-2x^2y+xy^2-4x\)

\(=x\left(x^2-2xy+y^2\right)-4x\)

\(=x\left(x-y\right)^2-4x\)

\(=x\left[\left(x-y\right)^2-4\right]\)

\(=x\left(x-y+2\right)\left(x-y-2\right)\)

27 tháng 8 2023

a) (x + 2y)² - (x - y)²

= (x + 2y - x + y)(x + 2y + x - y)

= 3y(2x + y)

b) (x + 1)³ + (x - 1)³

= (x + 1 + x - 1)[(x + 1)² - (x + 1)(x - 1) + (x - 1)²]

= 2x(x² + 2x + 1 - x² + 1 + x² - 2x + 1)

= 2x(x² + 3)

c) 9x² - 3x + 2y - 4y²

= (9x² - 4y²) - (3x - 2y)

= (3x - 2y)(3x + 2y) - (3x - 2y)

= (3x - 2y)(3x + 2y - 1)

d) 4x² - 4xy + 2x - y + y²

= (4x² - 4xy + y²) + (2x - y)

= (2x - y)² + (2x - y)

= (2x - y)(2x - y + 1)

e) x³ + 3x² + 3x + 1 - y³

= (x³ + 3x² + 3x + 1) - y³

= (x + 1)³ - y³

= (x + 1 - y)[(x + 1)² + (x + 1)y + y²]

= (x - y + 1)(x² + 2x + 1 + xy + y + y²)

g) x³ - 2x²y + xy² - 4x

= x(x² - 2xy + y² - 4)

= x[(x² - 2xy + y²) - 4]

= x[(x - y)² - 2²]

= x(x - y - 2)(x - y + 2)