Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trình tự dựng gồm 3 bước:
- Dựng đoạn thẳng BC = 6cm
- Dựng cung chứa góc 40o trên đoạn thẳng BC.
- Dựng đường thẳng xy song song với BC và cách BC một khoảng là 4cm như sau:
Trên đường trung trực d của đoạn thẳng BC lấy đoạn HH' = 4cm (dùng thước có chia khoảng mm). Dựng đường thẳng xy vuông góc với HH' tại H
Gọi giao điểm xy và cung chứa góc là , . Khi đó tam giác ABC hoặc A'BC đều thỏa yêu cầu của đề toán
Cách dựng:
+ Dựng đoạn thẳng BC = 6cm.
+ Dựng cung chứa góc 40º trên đoạn thẳng BC (tương tự bài 46) :
Dựng tia Bx sao cho
Dựng tia By ⊥ Bx.
Dựng đường trung trực của BC cắt By tại O.
Dựng đường tròn (O; OB).
Cung lớn BC chính là cung chứa góc 40º dựng trên đoạn BC.
+ Dựng đường thẳng d song song với BC và cách BC một đoạn 4cm:
Lấy D là trung điểm BC.
Trên đường trung trực của BC lấy D’ sao cho DD’ = 4cm.
Dựng đường thẳng d đi qua D’ và vuông góc với DD’.
+ Đường thẳng d cắt cung lớn BC tại A.
Ta được ΔABC cần dựng.
Chứng minh:
+ Theo cách dựng có BC = 6cm.
+ A ∈ cung chứa góc 40º dựng trên đoạn BC
+ A ∈ d song song với BC và cách BC 4cm
⇒ AH = DD’ = 4cm.
Vậy ΔABC thỏa mãn yêu cầu đề bài.
Biện luận: Do d cắt cung lớn BC tại hai điểm nên bài toán có hai nghiệm hình.
a) Áp dụng định lí py ta go trong \(\Delta\)ABC:\(\widehat{A}\)=1v
BC2= AB2+AC2
=62+82
=>BC=10
áp dụng hệ thức lượng giữa cạnh và góc trong \(\Delta\)ABC:
\(\dfrac{1}{h^2}=\dfrac{1}{b^2}+\dfrac{1}{c^2}\) => \(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}=\dfrac{1}{6^2}+\dfrac{1}{8^2}=\dfrac{25}{576}\)
=>AH=23,04
Ta có :
AB2=BC2.BH2
=>BH=\(\dfrac{AB^2}{BC}\)=\(\dfrac{6^2}{10}=3,6\)
BC=BH+HC
=>HC=BC-BH=10-3,6=6,4
Trên BC lấy I sao cho IC=IB
Ta có AM=MC=AC/2=20/2= 10 cm
Từ M kẻ MH vuông góc AB. Theo gt, ta được MH=8 cm
Áp dụng Pytago trong tam giác vuông AMH: AH2= AM2 - MH2 = 102 - 82= 36 ----> AH=6 cm
có AM=MC ; IB=IC ---> MI=1/2AB=1/2 .24 =12 cm( đường TB)
Từ I kẻ IK vuông góc AB
có MI// AB( MI là đường trung bình) ; IK//MK (cùng vuông góc AB)
---> MIKH là hình bình hành
---> MI=HK=12 cm; MH=IK=8 cm
BK= AB-AH-HK = 24-6-12=6 cm
Xét tam giác AMH và tam giác BIK:
AH=BK=6
góc AHM= góc BKI= 90O
MH=IK=8
----> tam giác AMH=tam giác BIK(c.g.c)
----> góc MAH= góc IBK (cặp góc tương ứng) hay góc CAB= góc CBA
----> tam giác ABC cân tại C
b) có AM=MC=AC/2=10 cm ; IB=IC= BC/2 ; mà AC=BC (tam giáccân)
----> AM=MC=IB=IC=10 cm
Kéo dài CO cắt AB tại D
tam giác AOC có OA=OC (bán kính) --> tam giác AOC cân tại O
có OM là trung tuyến ---> OM vuông góc AC hay góc OMC=90o
Tương tự với tam giác OCB được OI vuông góc BC hay góc OIC=90o
Xét tam giác vuông OMC và tam giác vuông OIC:
MC=IC=10cm
OC cạnh chung
--->tam giác OMC = tam giác OIC (ch.cgv)
--> góc MCO= góc ICO ---> CO hay CD là phân giác góc ACB của tam giác cân ABC --->
CD vuông góc AB hay góc ADC=90oAD=BD=AB/2 = 12 cm
Theo Pytago trong tam giác ACD: CD2= AC2-AD2 = 202-122 =256 ---> CD=16 cm
Đặt OC=OA=X --> OD= CD-OC = 16 - X
Theo Pytago tam giác AOD: AO2= OD2+AD2
<-->X2= (16-X)2 + 122
<--> 162 -32X + X2 +122 - X2=0
<--> 400 - 32X=0
<--> X= -400/-32= 12,5 cm
Vậy bán kính đường tròn bằng 12,5 cm
hứng minh được , từ đó có .AE phần AB=AF phần AC
Ta có: (g.c.g)
b, từ câu a) suy ra EF phần BC=AE phần AB=cos A=cos60 độ =1 phần 2
=> BC=10cm
c) Saef phần Sabc=(AE phần AB)^2=cos^2 A=1 phần 4 => SAEF =1 phần 4 SABC=25cm^2
Bài 2:
Xét \(\Delta ABC\)có \(\widehat{A}=90^o\)và\(AH\perp BC\)
\(\Rightarrow AH^2=HB.HC\)(Hệ thức lượng)
\(AH^2=25.64\)
\(AH=\sqrt{1600}=40cm\)
Xét \(\Delta ABH\)có\(\widehat{H}=90^o\)
\(\Rightarrow\tan B=\frac{AH}{BH}\)\(=\frac{40}{25}=\frac{8}{5}\)
\(\Rightarrow\widehat{B}\approx58^o\)
Xét \(\Delta ABC\)có \(\widehat{A}=90^o\)
\(\Rightarrow\widehat{B}+\widehat{C}=90^o\)
\(58^o+\widehat{C}=90^o\)
\(\Rightarrow\widehat{C}\approx90^o-58^o\)
\(\widehat{C}\approx32^o\)
\(\dfrac{B}{C}=\dfrac{4}{3}\Rightarrow B=\dfrac{4C}{3}\)
\(B+C=180^0-A=105^0\Rightarrow C+\dfrac{4C}{3}=105^0\Rightarrow C=45^0\) \(\Rightarrow B=60^0\)
Kẻ đường cao AD ứng với BC (do 2 góc B và C đều nhọn nên D nằm giữa B và C)
Trong tam giác vuông ABD:
\(sinB=\dfrac{AD}{AB}\Rightarrow AD=AB.sinB=10,6.sin60^0\approx9,2\left(cm\right)\)
\(cosB=\dfrac{BD}{AB}\Rightarrow BD=AB.cosB=10,6.cos60^0=5,3\left(cm\right)\)
Trong tam giác vuông ACD:
\(tanC=\dfrac{AD}{CD}\Rightarrow CD=AD.tanC=9,2.tan45^0=9,2\left(cm\right)\)
\(sinC=\dfrac{AD}{AC}\Rightarrow AC=\dfrac{AD}{sinC}=\dfrac{9,2}{sin45^0}\approx13\left(cm\right)\)
\(BC=BD+CD=5,3+9,2=14,5\left(cm\right)\)
\(S_{ABC}=\dfrac{1}{2}AD.BC=\dfrac{1}{2}.9,2.14,5=66,7\left(cm^2\right)\)
Kẻ đường cao AH ứng với BC, đặt \(CH=x\Rightarrow BH=4-x\)
Trong tam giác vuông ABH
\(tanB=\dfrac{AH}{BH}\Rightarrow AH=BH.tanB=\left(4-x\right).tan70^0\)
Trong tam giác vuông ACH:
\(tanC=\dfrac{AH}{CH}\Rightarrow AH=CH.tanC=x.tan45^0=x\)
\(\Rightarrow\left(4-x\right)tan70^0=x\)
\(\Leftrightarrow\left(1+tan70^0\right)x=4.tan70^0\)
\(\Leftrightarrow x=\dfrac{4tan70^0}{1+tan70^0}\approx2,2\left(cm\right)\)
\(\Rightarrow CH=AH=2,2\left(cm\right)\)
\(AC=\sqrt{CH^2+AH^2}=AH\sqrt{2}\approx3,1\left(cm\right)\)
\(S_{ABC}=\dfrac{1}{2}AH.BC=\dfrac{1}{2}.2,2.4=4,4\left(cm^2\right)\)
a: Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
Xét ΔABC vuông tại A có \(\sin B=\dfrac{AC}{BC}=\dfrac{4}{5}\)
nên \(\widehat{B}=53^0\)
=>\(\widehat{C}=37^0\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH\cdot BC=AB\cdot AC\)
hay AH=4,8(cm)
a. Ta có: AB2 = 62 = 36
AC2 = 4,52 = 20,25
BC2 = 7,52 = 56,25
Vì AB2 + AC2 = 36 + 20,25 = 56,25 = BC2 nên tam giác ABC vuông tại A (theo định lí đảo Pi-ta-go)
Kẻ AH ⊥ BC
Ta có: AH.BC = AB.AC
b. Tam giác ABC và tam giác MBC có chung cạnh đáy BC, đồng thời SABC = SMBC nên khoảng cách từ M đến BC bằng khoảng cách từ A đến BC. Vậy M thay đổi cách BC một khoảng bằng AH nên M nằm trên hai đường thẳng x và y song song với BC cách BC một khoảng bằng AH.1.
Chứng minh được .
Suy ra điểm cùng thuộc đường tròn đường kính nên tứ giác nội tiếp.
Có tứ giác nội tiếp nên ( góc nội tiếp cùng chắn cung ) hay .
Trong đường tròn tâm , ta có là góc nội tiếp chắn cung và nội tiếp chắn cung
.
2.
có nên hay .
Ta chứng minh được vừa là đường cao, vừa là phân giác của tam giác nên là trung điểm của .
Chứng minh tương tự là trung điểm của là đường trung bình của tam giác (1).
Do nên là điểm chính giữa cung (2).
Từ (1) và (2) suy ra .
3.
Kẻ đường kính của đường tròn tâm , chứng minh tứ giác nội tiếp đường tròn đường kính .
Chứng minh tứ giác là hình bình hành, suy ra .
Trong đường tròn có (2 góc nội tiếp cùng chắn cung ). Chỉ ra tam giác vuông tại và áp dụng hệ thức giữa cạnh và góc ta được cm.
Đường tròn ngoại tiếp tứ giác cũng là đường tròn ngoại tiếp tam giác .
Gọi là bán kính đường tròn ngoại tiếp tam giác .
Suy ra cm.
Vậy cm.
Xét ΔABC có \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)
=>\(\widehat{A}=180^0-65^0-40^0=75^0\)
Xét ΔABC có \(\dfrac{BC}{sinA}=\dfrac{AC}{sinB}=\dfrac{AB}{sinC}\)
=>\(\dfrac{AB}{sin40}=\dfrac{AC}{sin65}=\dfrac{4.2}{sin75}\)
=>\(\left\{{}\begin{matrix}AB=4,2\cdot\dfrac{sin40}{sin75}\simeq2,79\left(cm\right)\\AC=4,2\cdot\dfrac{sin65}{sin75}\simeq3,94\left(cm\right)\end{matrix}\right.\)