Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2 : phân tích các đa thức sau thành nhân tử
a, x3 - 2x2 + x
\(=x\left(x^2-2x+1\right)\)
\(=x\left(x-1\right)^2\)
b, x2 - 2x - y2 + 1
\(=x^2-2x+1-y^2\)
\(=\left(x-1\right)^2-y^2\)
\(=\left(x-1-y\right)\left(x-1+y\right)\)
vt mũ hộ mk đuy bạn :
\(x^3-2x^2+x\)
\(=x^3-x^2-x^2+x\)
\(=\left(x^3-x^2\right)-\left(x^2-x\right)\)
\(=x^2\left(x-1\right)-x\left(x-1\right)\)
\(=\left(x^2-x\right)\left(x-1\right)\)
\(b,x^2-2x-y^2+1\)
\(=\left(x^2-2x+1\right)-y^2\)
\(=\left(x-1\right)^2-y^2\)
\(=\left(x-1+y\right)\left(x-1-y\right)\)
Lời giải:
1.
$x^3+3x^2-16x-48=(x^3+3x^2)-(16x+48)=x^2(x+3)-16(x+3)$
$=(x+3)(x^2-16)=(x+3)(x-4)(x+4)$
2.
$4x(x-3y)+12y(3y-x)=4x(x-3y)-12y(x-3y)=(x-3y)(4x-12y)=4(x-3y)(x-3y)=4(x-3y)^2$
3.
$x^3+2x^2-2x-1=(x^3-x^2)+(3x^2-3x)+(x-1)=x^2(x-1)+3x(x-1)+(x-1)$
$=(x-1)(x^2+3x+1)$
ĐKXĐ: \(x\ne\pm2\)
\(\dfrac{2x^2-x^3}{x^2-4}=\dfrac{x^2\left(2-x\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{-x^2\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{-x^2}{x+2}\)
\(---\)
ĐKXĐ: \(x\ne-1\)
\(\dfrac{x+1}{x^3+1}=\dfrac{x+1}{\left(x+1\right)\left(x^2-x+1\right)}=\dfrac{1}{x^2-x+1}\)
1: \(=\dfrac{x-1}{x^2+x+1}+\dfrac{x+1}{x-1}\)
\(=\dfrac{x^2-2x+1+x^3+x^2+x^2+x+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{x^3+3x^2+2}{\left(x-1\right)\left(x^2+x+1\right)}\)
2: \(=\dfrac{\left(x^2-y^2\right)^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}=\dfrac{\left(x-y\right)\left(x+y\right)^2}{x^2+xy+y^2}\)
a: (1-2x)^3-(1+2x)^3
\(=1^3-3\cdot1^2\cdot2x+3\cdot1\cdot\left(2x\right)^2-8x^3-8x^3-12x^2-6x-1\)
\(=1-6x+12x^2-8x^3-8x^3-12x^2-6x-1\)
\(=-16x^3-12x\)
b: \(=x^3-6x^2+12x-8-x^3-x^2+8\)
\(=-7x^2+12x\)
c: \(=x^3+8-12x+6x^2-x^3+6x^2+12x\)
\(=12x^2+8\)
Bài 1:
\(a,6x^2-15x^3y\\ b,=-\dfrac{2}{3}x^2y^3+\dfrac{2}{3}x^4y-\dfrac{8}{3}xy\)
Bài 2:
\(a,=20x^3-10x^2+5x-20x^3+10x^2+4x=9x\\ b,=3x^2-6x-5x+5x^2-8x^2+24=24-11x\\ c,=x^5+x^3-2x^3-2x=x^5-x^3-2x\)
\(\dfrac{x^3+2x}{x^3+1}+\dfrac{2x}{x^2-x+1}+\dfrac{1}{x+1}\left(x\ne-1\right)\\=\dfrac{x^3+2x}{\left(x+1\right)\left(x^2-x+1\right)}+\dfrac{2x}{x^2-x+1}+\dfrac{1}{x+1} \\ =\dfrac{x^3+2x+2x\left(x+1\right)+x^2-x+1}{\left(x+1\right)\left(x^2-x+1\right)}\\ =\dfrac{x^3+2x+2x^2+2x+x^2-x+1}{\left(x+1\right)\left(x^2-x+1\right)}\\ =\dfrac{x^3+3x^2+3x+1}{\left(x+1\right)\left(x^2-x+1\right)}\\ =\dfrac{\left(x+1\right)^3}{\left(x+1\right)\left(x^2-x+1\right)}\\ =\dfrac{x^2+2x+1}{x^2-x+1}\)
Ta có:
`\frac{x^3 + 2x}{x^3 + 1} + \frac{2x}{x^2 - x + 1} + \frac{1}{x + 1}`
Mẫu số chung là: `M = (x + 1)(x^2 - x + 1)`
`= \frac{x^3 + 2x}{(x + 1)(x^2 - x + 1)} + \frac{2x(x + 1)}{(x + 1)(x^2 - x + 1)} + \frac{x^2 - x + 1}{(x + 1)(x^2 - x + 1)}`
`= \frac{x^3 + 2x + 2x(x + 1) + x^2 - x + 1}{(x + 1)(x^2 - x + 1)}`
`=\frac{x^3 + 3x^2 + 3x + 1}{(x + 1)(x^2 - x + 1)}`
Vậy: Phân thức quy đồng, rút gọn là: `\frac{x^3 + 3x^2 + 3x + 1}{(x + 1)(x^2 - x + 1)}`