Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
2/ Ta phân tích
ax3 + bx2 + c = (x + 2)[ax2 + (b - 2a)x - 2(b - 2a)] + c + 4(b - 2a) = (x2 - 1)(ax + b) + ax + b + c
Từ đó kết hợp với đề bài ta có hệ
\(\hept{\begin{cases}c+4\left(b-2a\right)=0\\a=1\\b+c=5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=1\\b=1\\c=4\end{cases}}\)
Ta có A = (x + y)3 + z3 + kxyz - 3xy(x + y)
= (x + y + z)[(x + y)2 - (x + y)z + z2] + xy(kz - 3x - 3y)
Nhìn vào cái này ta dễ thấy là để A chia hết cho x + y + z thì k = - 3
![](https://rs.olm.vn/images/avt/0.png?1311)
p(x)=\(x^3+ã^2+bx+c\)
với x=1 thì p(1)=0 hay
\(1+a+b+c=0\)
p(x) \(chia\)p(x-2) dư 6
với x=2 =>\(4a+2b+c+8=6< =>4a+2b+c=-2\)
tương tự với cái còn lại
xong bạn giải hệ phương trình bậc nhất ba ẩn là xong
cho đa thức P(x)=ax^2+bx+3. Tìm các hệ só a, b biết phần dư trong phép chia P(x) cho x+2=-1 và x-1=8
![](https://rs.olm.vn/images/avt/0.png?1311)
Áp dụng định lí Bezout :
\(P\left(-2\right)=-1\Rightarrow4a-2b+3=-1\Rightarrow4a-2b=-4\)
\(P\left(1\right)=8\Rightarrow a+b+3=8\Rightarrow a+b=5\)
\(\Rightarrow\hept{\begin{cases}4a-2b=-4\\a+b=5\end{cases}\Rightarrow\hept{\begin{cases}a=1\\b=4\end{cases}}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi đa thức f(x) = ax3 + bx2 + c
g(x) = ax3 + bx2 - x + c - 5
Ta có f(x) chia hết cho x + 2 nên khi thay x = - 2 thì f(x) = 0
<=> - 8a + 4b + c = 0 (1)
g(x) chia hết cho x2 - 1 hay chia hết cho x + 1 và x - 1
Từ đó ta có
- a + b + c - 4 = 0 và a + b + c - 6 = 0
Từ đây ta có hệ phương trình bật nhất 3 ẩn.
Bạn tự giải phần còn lại nhé
![](https://rs.olm.vn/images/avt/0.png?1311)
Đặt \(f\left(x\right)=ax^3+bx^2+c\)
Do \(f\left(x\right)\) chia hết \(x+2\Rightarrow f\left(-2\right)=0\)
\(\Rightarrow-8a+4b+c=0\) (1)
Do \(f\left(x\right)\) chia \(x^2-1\) dư 5
\(\Rightarrow f\left(x\right)=g\left(x\right).\left(x^2-1\right)+5\) với \(g\left(x\right)\) là 1 đa thức bậc nhất nào đó
\(\Rightarrow ax^3+bx^2+c=g\left(x\right)\left(x^2-1\right)+5\) (*)
Thay \(x=1\) vào (*) \(\Rightarrow a+b+c=5\) (2)
Thay \(x=-1\) vào (*) \(\Rightarrow-a+b+c=5\) (3)
(1);(2);(3) \(\Rightarrow\left\{{}\begin{matrix}-8a+4b+c=0\\a+b+c=5\\-a+b+c=5\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=0\\b=-\dfrac{5}{3}\\c=\dfrac{20}{3}\end{matrix}\right.\)
đặt f(x)=3x^4+ax^2+bx+c
f(x) chia hết cho x-2 và chia x^2-1 dư -7x-1
=> f(x)=(x-2).g(x)=(x^2-1).q(x)-7x-1 với g(x), q(x) là các đa thức
với x=2 => f(2)=3.16+4a+2b+c=0
4a+2b+c=-48(*)
với x=1 => f(1)=3+a+b+c=0-7.1-1
a+b+c=-11(**)
với x=-1 => f(1)=3+a-b+c=0+7-1
a-b+c=3(***)
từ (*)(**)(***) ta có: 4a+2b+c=-48
a+b+c=-11
a-b+c=3
Giải hệ phương trình trên => a=-10; b=-7; c=6