K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 9 2024

a) a<b => a+a<a+b => a+b>2a

b) a<b => 5a-4a<b => 5a-b<4a

6 tháng 9 2024

`a,` Ta có:
`b > a`
`-> a + b > a + a`
`-> a + b > 2a (đpcm)`
`b,` Ta có:
`b > a`
`-> 5a - b < 5a - a`
`-> 5a - b < 4a (đpcm)`

1 tháng 8 2017

khó vậy

1 tháng 8 2017

xin lỗi nha em chưa học tới lớp 9 nên ko biết bài này

2 tháng 10 2017

t.i.c.k mik mik t.i.c.k lại

2 tháng 10 2017

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\frac{4}{2a+b+c}=\frac{4}{\left(a+b\right)+\left(a+c\right)}\le\frac{1}{a+b}+\frac{1}{a+c}\)

\(\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)+\frac{1}{4}\left(\frac{1}{a}+\frac{1}{c}\right)\)

Tương tự cho 2 BĐT còn lại cũng có:

\(\frac{4}{2b+c+a}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)+\frac{1}{4}\left(\frac{1}{b}+\frac{1}{c}\right)\)\(;\frac{4}{2c+a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{c}\right)+\frac{1}{4}\left(\frac{1}{b}+\frac{1}{c}\right)\)

Cộng theo vế 3 BĐT trên ta có:

\(VT\le\frac{1}{4}\left(4a+4b+4c\right)=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=VP\)

Khi \(a=b=c\)

11 tháng 1 2015

cái này bạn dùng bất đẳng thức \(\frac{a^2}{x}+\frac{b^2}{y}>=\frac{\left(a+b\right)^2}{x+y}\)2 lần với từng phân thức. rồi cộng vế theo vế là xong