Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: Gọi K là trung điểm của DC
Xét ΔBDC có
M là trung điểm của BC
K là trung điểm của DC
Do đó: MK là đường trung bình của ΔBDC
Suy ra: MK//BD và \(MK=\dfrac{BD}{2}\)
hay MK//ID
Xét ΔAMK có
I là trung điểm của AM
ID//MK
Do đó: D là trung điểm của AK
Suy ra: AD=DK
mà DK=KC
nên AD=DK=KC
hay \(AC=AD+DK+DC=3\cdot AD\)
b: Xét ΔAMK có
I là trung điểm của AM
D là trung điểm của AK
Do đó: ID là đường trung bình của ΔAMK
Suy ra: \(ID=\dfrac{MK}{2}\)
hay MK=2ID
mà \(MK=\dfrac{BD}{2}\)
nên \(\dfrac{BD}{2}=2\cdot ID\)
hay \(ID=\dfrac{1}{4}\cdot BD\)
Nhìn cái câu hỏi mà nản giải thật sự ấy. Làm số trước nha:vv
Câu 3:
a) \(2x^3y-18xy^3=2xy\left(x^2-9y^2\right)=2xy\left(x-3y\right)\left(x+3y\right)\)
b) \(x^3-4x^2-9x+36=x^2\left(x-4\right)-9\left(x-4\right)=\left(x-4\right)\left(x^2-9\right)=\left(x-4\right)\left(x-3\right)\left(x+3\right)\)Câu 4:
a)\(x^3-16x=0\Leftrightarrow x\left(x^2-16\right)=0\Leftrightarrow x\left(x-4\right)\left(x+4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x-4=0\\x+4=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=4\\x=-4\end{matrix}\right.\)
Vậy....
b. \(\left(x-2\right)^2+\left(x-3\right)\left(x-2\right)=0\Leftrightarrow\left(x-2\right)\left(x-2+x-3\right)=0\Leftrightarrow\left(x-2\right)\left(2x-5\right)=0\)\(\Rightarrow\left[{}\begin{matrix}x-2=0\\2x-5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{5}{2}\end{matrix}\right.\)
Vậy...
Câu 2: ĐKXĐ: \(x\ne0;y\ne0;x\ne y\)
Ta có: \(A=\dfrac{14x^3y\left(x-y\right)^2}{21x^2y^2\left(y-x\right)^3}=\dfrac{14x^3y\left(y-x\right)^2}{21x^2y^2\left(y-x\right)^3}=\dfrac{2x}{3y\left(y-x\right)}\)
Câu 2
ĐKXĐ : ....
\(=\dfrac{2x\left(y-x\right)^2}{3y\left(y-x\right)^3}=\dfrac{2x}{3y\left(y-x\right)}\)
Câu 3 :
\(a,=2xy\left(x^{2-y^2}\right)=2xy\left(x+y\right)\left(x-y\right)\)
\(b,=x^2\left(x-4\right)-9\left(x-4\right)=\left(x-3\right)\left(x+3\right)\left(x-4\right)\)
Câu 4
a/ \(\Leftrightarrow x\left(x^2-4\right)=0\Leftrightarrow x\left(x-2\right)\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)
b/ \(\Leftrightarrow\left(x-2\right)\left(x-2+x-3\right)=0\Leftrightarrow\left(x-2\right)\left(2x-5\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{5}{2}\end{matrix}\right.\)
Bài 2 :
a, Xét tam giác ABC ta có :
D là trung điểm AB
M là trung điểm CB
=)) DM là đường TB tam giác ABC
=)) DM // AC hay DM // AE (1)
Ta có : E là trung điểm AC
M là trung điểm BA
=)) EM là đường TB tam giác ABC
=)) EM // AB hay EM // AD (2)
Từ 1;2 =)) Tứ giác ADME là hình bình hành
b, Nếu tam giác ABC cân tại A => AM là đường trung tuyến AM
=)) AM đồng thời là tia phân giác của ^A
Xét hình bình hành ADME có 2 đường chéo AM là tia phân giác của ^A (cmt)
=)) Tứ giác ADME là hình thoi
c, Nếu tam giác ABC vuông tại A => ^A = 90^0
Xét hình bình hành ADME có ^A =90^0
=)) Tứ giác ADME là hình chữ nhật
2/
a/ hình thang ABCD có
AB // EF
==> AB // KF
xét tam giác ABC có
F là trung điểm của BC
AB // KF
==> KF là đường trung bình của tam giác ABC
==> K là trung điểm của AC
==> AK = KC
b/
E là trung điểm AD
F là trung điểm BC
==> EF là đường trung bình của hình thang ABCD
==> EF = (AB + CD) / 2 = (4 + 10) / 2 = 7(cm)
KF là đường trung bình của tam giác ABC nên
KF = AB / 2 = 4 / 2 = 2(cm)
==> EK = EF - KF = 7 - 2 = 5(cm)
vậy EK = 5(cm), KF = 2 (cm)
3/
a/ ta có
D là trung điểm của AB
M là trung điểm của BC
==> DM là đường trung bình của tam giác ABC
==> Dm // AC
==> DM // AE ( E thuộc AC, DM // AC)
chứng minh tương tự ta có
ME là đường trung bình của tam giác ABC
==> AD // ME
tứ giác ADME có DM // AE, AD // ME nên là HBH
b/ ( nếu tam giác ABC cân tại A)
tam giác ABC cân tại A ==> AB = AC
AD = 1/2 AB (D là trung điểm của AB)
AE = 1/2 AC (E là trung điểm của AC)
==> AD = AE
c/ (nếu tam giác ABC vuông)
ta có
tứ giác ADME là HBH
góc A = 90 độ
==> tứ giác ADME là HCN
d/ ta có
AB^2 + AC^2 = BC^2
6^2 + 8^2 = 100
==> BC = 10(cm)
AM là đường trung tuyến của tam giác ABC
==> AM = 1/2 BC = 1/2 . 10 = 5(cm)
vậy AM = 5cm
Bài 2:Cho mk ý kiến,sai đề à???4cm=6cm nhé
Bài 3:
Bài 4:
Nối D với E, nối D với M:
Chứng minh được ED//FB (BEDF là hình thoi) (1)
BF là đường trung bình tam giác AMD
=> MD//FB (tc) (2)
(1),(2) => MD trùng với ED (định lý) ( Qua 1 điểm ko thuộc đường thẳng a có 1 và chỉ 1 đường thẳng đi qua điểm đó và song song với đường thẳng a )
từ đó bạn có thể cm BMCD là hình chữ nhật ( nếu cần )
( xét từ1 giác BDCM có BC cắt DM tại trung điểm của mỗi đoạn ->BMCD là Hình chữ nhật)
Bài 5:
Bài 1:
a: Xét tứ giác ABEF có
BE//AF
BE=AF
BE=BA
Do đó: ABEF là hình thoi
b: Xét ΔBIE có BI=BE
nên ΔBIE cân tại B
mà góc IBE=60 độ
nên ΔBIE đều
=>góc I=60 độ
Xét tứ giác AFEI có
EF//AI
góc I=góc A
Do đó AFEI là hình thang cân
c: Xét ΔBAD có
BF là đường trung tuyến
BF=AD/2
Do đó: ΔBAD vuông tại B
=>DB vuông góc với BI
Xét tứ giác BICD có
BI//CD
BI=CD
Do đó: BICD là hình bình hành
mà DB vuông góc với BI
nên BICD là hình chữ nhật
d: Xét ΔAED có
EF la trung tuyến
FE=DA/2
Do đó: ΔAED vuông tại E
=>góc AED=90 độ